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Eye movements reflect expertise 
development in hybrid search
Megan H. Papesh1*  , Michael C. Hout1, Juan D. Guevara Pinto2, Arryn Robbins1,3 and Alexis Lopez1

Abstract 

Domain-specific expertise changes the way people perceive, process, and remember information from that domain. 
This is often observed in visual domains involving skilled searches, such as athletics referees, or professional visual 
searchers (e.g., security and medical screeners). Although existing research has compared expert to novice perfor-
mance in visual search, little work has directly documented how accumulating experiences change behavior. A 
longitudinal approach to studying visual search performance may permit a finer-grained understanding of experi-
ence-dependent changes in visual scanning, and the extent to which various cognitive processes are affected by 
experience. In this study, participants acquired experience by taking part in many experimental sessions over the 
course of an academic semester. Searchers looked for 20 categories of targets simultaneously (which appeared with 
unequal frequency), in displays with 0–3 targets present, while having their eye movements recorded. With experi-
ence, accuracy increased and response times decreased. Fixation probabilities and durations decreased with increas-
ing experience, but saccade amplitudes and visual span increased. These findings suggest that the behavioral benefits 
endowed by expertise emerge from oculomotor behaviors that reflect enhanced reliance on memory to guide atten-
tion and the ability to process more of the visual field within individual fixations.
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Significance statement
We examined the development of expertise in a longi-
tudinal visual search study, measuring how experience 
changes individual performance and gaze behaviors. 
Across 14 sessions throughout an academic semester, 
observers gained experience searching for items from 
20 memorized categories among displays of 32 objects. 
Some displays contained no targets, and others con-
tained up to three. With experience, observers became 
faster and more accurate. More importantly, their eye 
movements revealed that, relative to their average perfor-
mance, experience allowed observers to rely more heavily 
on memory to identify objects efficiently and to process 
more of the visual field within each fixation. Although 
experts and novices may differ in many factors (e.g., 

interest, domain-specific education, etc.), our results 
confirm that the oculomotor behaviors associated with 
expert scanning are learned, rather than innate. These 
results carry implications for training and assessment 
in professional search domains and represent one of the 
only longitudinal studies to track how skill development 
influences gaze behaviors over time.

Introduction
Across many domains and sensory modalities, expertise 
confers perceptual and cognitive benefits. Within visual 
domains, these benefits can include the abilities to effi-
ciently extract relevant information from the environ-
ment, quickly process/perceive that information, and/
or act on that information. For example, expert referees 
must direct attention to certain “contact zones” while 
monitoring for penalties (Spitz et  al. 2016), quickly 
deciding whether one of many possible infractions has 
occurred before deciding to raise a card or throw a flag. 

Open Access

Cognitive Research: Principles
and Implications

*Correspondence:  mpapesh@nmsu.edu
1 Department of Psychology, New Mexico State University, P.O. 
Box 30001/MSC 3452, Las Cruces, NM 88003, USA
Full list of author information is available at the end of the article

http://orcid.org/0000-0002-9950-4369
http://creativecommons.org/licenses/by/4.0/
http://crossmark.crossref.org/dialog/?doi=10.1186/s41235-020-00269-8&domain=pdf


Page 2 of 20Papesh et al. Cogn. Research             (2021) 6:7 

These expert abilities typically result from accumulated 
experience rather than direct instruction, as verbalizing 
expert skills is difficult (e.g., Beilock and Carr 2001) and 
liable to impair skill execution (e.g., Flegal and Anderson 
2008). Although performance failures in some domains 
are relatively inconsequential (e.g., sports refereeing), 
failure in other domains (e.g., radiology, airport baggage 
screening) can carry serious consequences. Moreover, 
experts in these consequential domains must contend 
with the fact that they are often scanning for something 
they rarely find. For example, in mammography, only 
0.1% of medical images screened contain evidence of 
cancer (Krupinski 2010). In this study, we investigated 
how expertise develops across many sessions of practice 
in a laboratory search task, and how scanning, perceiv-
ing, and decision-making are affected by accumulating 
experience and target frequency.

Relative to novices, experts have been shown to exe-
cute fewer, or more systematic, eye movements while 
performing their expert tasks, including chess (Charness 
et al. 2001; Reingold and Charness 2005; Reingold et al. 
2001), sports refereeing (e.g., Roca et al. 2013; Spitz et al. 
2016), medical image screening (Drew et al. 2013; Kun-
del and La Follette 1972; Kundel et al. 2007; Nodine et al. 
1996; Wood 1999), and baggage screening (e.g., Biggs 
et  al. 2013; Biggs and Mitroff 2014), among others (see 
Brams et  al. 2019, for a review and meta-analysis). For 
example, Reingold et  al. (2001) gave a modified “check 
detection” task to novice, intermediate, and expert chess 
players: Players examined 3 × 3 subsections of chess-
boards to quickly determine whether the king was “in 
check.” (Three pieces were presented on the board, and 
none were presented in the central square.) Participants’ 
eye movements revealed that, relative to novice and 
intermediate players, experts were more likely to leave 
their gaze on the empty center of the board, indicating 
their check detection decision without moving their eyes. 
Moreover, when eye movements did occur, experts made 
fewer fixations than their less-skilled counterparts. This 
finding, that experts can perceive more of the board with 
fewer fixations, has since been replicated several times 
(Charness et al. 2001; Reingold and Charness 2005).

The ability to perceive more information with fewer 
eye movements may reflect alterations to experts’ func-
tional viewing field (FVF).1 The FVF is the display area 
directly attended by observers, where items falling in 
foveal or parafoveal vision are processed with higher 
resolution (Sanders 1970). Items falling outside the 

FVF are processed peripherally, with lower resolu-
tion. Although visual processing is fundamentally lim-
ited by the distribution of photoreceptors in the retina, 
the FVF reflects the manner by which attention further 
affects central processing, such that task parameters and 
demands can alter the number of items processed in par-
allel from single fixations (Hulleman and Olivers 2017). 
For example, when targets are difficult to discriminate 
from distractors, the FVF “narrows” to reduce interfer-
ence and facilitate individual item inspections. As target 
discriminability becomes easier, the FVF expands, allow-
ing observers to inspect and reject multiple items from 
a single fixation. Because expert searchers rely on fewer 
eye movements to locate targets, they have been said to 
rely on a more “global” processing strategy (e.g., Manning 
et al. 2006), which a larger FVF facilitates.

An expanded FVF would be of limited utility without 
the ability to efficiently perceive the attended objects and 
avoid revisiting previously perceived scene regions. The 
role of memory, therefore, seems important to expert 
search performance. Across domains, researchers often 
find that experts exhibit superior ability to remember 
domain-specific material (see Gobet and Simon 1996; 
and Sala and Gobet 2017, for reviews). Chess experts, 
for example, can recall the names of various chess open-
ings and rely on these memories to more efficiently per-
ceive various arrangements (Chase and Simon 1973; 
Cooke et  al. 1993; De Groot 1965). Within laboratory 
visual search tasks, observers’ performance is facilitated 
when searched-through scenes are familiar (Hout and 
Goldinger 2010, 2012; Võ and Wolfe 2012; Wolfe et  al. 
2011), allowing searchers to quickly avoid or reject dis-
tractors. Similarly, “inhibition of return” often acts as a 
mechanism that encourages orienting toward novel loca-
tions, allowing observers to avoid revisiting a previously 
inspected area (Klein 2000). Relative to novices, expert 
searchers often show more search systematicity, reflect-
ing greater inhibition of return (Augustyniak and Tadeus-
iewicz 2006; Leong et al. 2007; Li et al. 2016).

After locating and perceiving a target, observers 
must decide whether to act on that information (e.g., 
note the presence of a radiological anomaly and throw 
a flag in football). Decision speed and accuracy often 
separate experts from novices, as experts have been 
found to be faster and/or more accurate than novices 
in sports (e.g., Alder et  al. 2014; Casanova et  al. 2013; 
Crespi et  al. 2012;  Del Campo et  al. 2018; Hancock 
and Ste-Marie 2013; Piras et  al. 2017; Schnyder et  al. 
2014; Williams et al. 1994; Williams and Davids 1998), 
radiology (e.g., Litchfield and Donovan 2016; Manning 
et al. 2006; Wood et al. 2013), and many other domains 
(see Brams et  al. 2019). Beyond behavioral metrics of 
decision speed and accuracy, expertise effects can be 

1  Similar concepts have been articulated, albeit with different names, such as 
the useful field of view (Ball et  al., 1988) or perceptual span (O’Regan et  al. 
1983).
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observed in oculomotor behaviors, such as the duration 
observers spend examining specific items or areas (e.g., 
Nodine et  al. 1996), or the latency between viewing a 
target and identifying it as meaningful. For example, 
experts typically spend more time examining regions 
with a high likelihood of containing a target and less 
time on regions containing distracting information 
(e.g., Gegenfurtner et al. 2011).

In a recent meta-analysis of search expertise, Brams 
et  al. (2019) described many behavioral skills that dif-
ferentiate experts from novices, and the cognitive and 
oculomotor variables that should reflect these differ-
ences across the different phases of individual search 
tasks. The earliest moments of a search task are charac-
terized by pre-attentive processing, during which basic 
features (e.g., colors, orientations; Wolfe and Utochkin 
2019) are registered. After the pre-attentive stage, 
selective attention works to guide attention in either a 
serial (Wolfe 2003; Woodman and Luck 2003) or par-
allel fashion (Hulleman and Olivers 2017; McElree and 
Carrasco 1999), depending on task parameters or theo-
retical framework. This guidance is based on knowledge 
of target-defining features (e.g., ketchup bottles are red) 
and also on learned information, such as scene regular-
ities (e.g., ketchup is often found on countertops; Wolfe 
2012; Wolfe et  al. 1989). While searching through a 
scene, observers also engage memory processes: Work-
ing memory processes allow them to quickly retrieve 
relevant memories or experiences, which may be used 
to guide current perception, and long-term memory 
processes are used to commit scene details to memory 
or retrieve knowledge about scene regularities that can 
enhance guidance.

With accumulating expertise, any one or more of 
the phases of a typical search task may be facilitated. 
In some domains (e.g., medicine), experts are more 
likely to locate the target with their first fixation (Brams 
et  al. 2019) and to have larger distances between suc-
cessive fixations (Brams et al. 2020), both of which are 
consistent with an expanded FVF. In other domains 
(e.g., sports, air traffic control), experts show enhanced 
guidance and are likely to spend more time inspecting 
relevant scene regions (Brams et  al. 2019). For exam-
ple, expert chess players can more quickly identify the 
pieces from a legal, or structured, arrangement of chess 
pieces, relative to illegal, or unstructured, arrangements 
(Brockmole et  al. 2008). Although the features of the 
individual chess pieces do not change across structured 
and unstructured arrangements, structured arrange-
ments allow observers to rely on long-term knowledge 
to facilitate gaze behaviors and perception.

The literature on expertise in visual search is often 
restricted to between-groups designs: Experts in a 

specific field are compared to trainees or pure novices 
within that field. Although researchers are typically care-
ful to equate various individual differences (e.g., visual 
acuity, education, age), one cannot control for innate or 
coincidental differences in visual skill that may encourage 
some people to self-select into professions that capital-
ize on that skill. In the present study, we used a relatively 
longitudinal approach to investigate expertise, such that 
each participant served as both a novice and, later, a 
skilled searcher with expert-level performance. Using this 
approach allowed us track changes to behavioral, cogni-
tive, and oculomotor skills as expertise develops, rather 
than using between-group comparisons, which may be 
susceptible to individual-difference variations.

The present investigation
In the present investigation, we monitored untrained 
searchers’ performance and oculomotor behaviors as 
they became adept at a laboratory visual search task 
designed to mimic some of the challenges faced by pro-
fessional visual searchers, including the use of poorly 
specified and numerous potential targets, and targets 
which appeared with varying frequencies. Although 
many laboratory search tasks are guided by picture cues 
of targets, real-world search is often guided by categori-
cal (i.e., word) cues, which impair, but do not preclude, 
attentional guidance (e.g., Schmidt and Zelinsky 2009). 
Additionally, as in many real-world search contexts, our 
search task involved multiple potential targets, drawn 
from many target categories (as in Cunningham and 
Wolfe 2014; Wolfe 2012). Although observers are able 
to search for many objects simultaneously, searching 
for multiple, relative to individual, items tends to make 
observers slower and less accurate (e.g., Menneer et  al.  
2007, 2009; Houtkamp and Roelfsema 2009; Schmidt 
et al. 2014; Stroud et al. 2012; Mestry et al. 2017). Moreo-
ver, using multiple-target search allowed us to measure 
decision processes, as observers did not know how many 
targets would be present in any given display. This ambi-
guity allows for meaningful search termination latencies.

Lastly, real-world search performance is often affected 
by the frequency with which observers encounter targets. 
In many applied domains, the most important targets 
appear relatively infrequently (e.g., a weapon in a carry-
on bag). Despite their importance, such rare targets 
often go undetected, a phenomenon known as the low-
prevalence effect (LPE; Wolfe et al. 2005). To be clear, the 
present study was not designed to investigate the LPE 
or mitigation strategies, both of which have been exam-
ined at length in other studies (e.g., Evans et  al. 2013a, 
b; Godwin et  al. 2015; Hout et  al. 2015; Papesh et  al. 
2018; Peltier and Becker 2016; Walenchok et  al. 2020; 
Wolfe et  al. 2007; Wolfe and VanWert 2010). Indeed, 



Page 4 of 20Papesh et al. Cogn. Research             (2021) 6:7 

the multiple-target nature of our paradigm made isolat-
ing frequency effects challenging, as observers could 
encounter multiple targets from the same-frequency cat-
egory within a single trial. We manipulated how often 
observers encountered specific target categories to bet-
ter reflect the conditions under which experts search for 
consequential and/or likely targets in applied domains.

The present investigation examined expertise devel-
opment in a laboratory analog of a mixed prevalence, 
hybrid search task. By adopting a longitudinal approach, 
we were able to measure the behavioral (accuracy and 
response time), cognitive (decision time), and oculomo-
tor (visits, dwell times, FVF, saccade amplitudes) meas-
ures that change as expertise develops.

Method
Participants
Thirteen unpaid research assistants from the laborato-
ries directed by the first two authors volunteered to par-
ticipate during their regularly scheduled laboratory hours 
(in lieu of data collection responsibilities). All partici-
pants were naïve to the purpose and design of the study, 
reported normal or corrected-to-normal vision (includ-
ing color vision), and provided written informed consent. 
Participants completed a variable number of sessions 
(as many as their schedules would allow within a single 
semester), ranging from 6 to 23. In total, there were 192 
experimental sessions recorded (14.77 sessions per par-
ticipant, on average). To standardize (and maximize) the 
number of sessions in our analyses, we limited the sample 
to participants who completed at least 14 experimental 
sessions (n = 10). Only the first 14 sessions of these par-
ticipants were included in analyses.

Design
In each session, we manipulated trial type (0-, 1-, 2-, 
and 3-target present, in equal proportions) and category 
frequency, with categories appearing with variable fre-
quency across all trials in an experimental session: least 
frequently (4 times), infrequently (8 times), frequently 
(16 times), and most frequently (32 times).

Stimuli
All stimuli came from the “Massive Memory” database 
(Brady et  al. 2008; Konkle et  al. 2010) and were photo-
graphs of real-world objects from 240 distinct object 
categories, resized (maintaining original proportions) 
to a maximum of 2.5° of visual angle (horizontal or ver-
tical) from a viewing distance of 55  cm. Images were 
no smaller than 2.0° of visual angle along either dimen-
sion. Each picture represented a single object or entity 
with no background. To populate the search arrays, 
targets were drawn from 20 categories (see Fig.  1), and 

distractors were drawn from 80 different categories. All 
image categories were made up of 16 exemplars (yielding 
320 potential target images and 1280 potential distrac-
tor images). The 20 target categories were randomly and 
evenly divided across each level of category frequency, 
which was held constant across sessions. See Appendix 
Figs. 12 and 13 for a full list of distractor categories and 
sample exemplars.

Apparatus
The experiment was controlled by EPrime vs.2 (Psychol-
ogy Software Tools, Pittsburgh, PA) and conducted in 
two separate laboratories simultaneously. In one labo-
ratory, the stimuli were presented on a 17″ CRT moni-
tor with refresh rate of 75  Hz and screen resolution of 
1920 × 1200, and in the other, the monitor was 24″ with 
a refresh rate of 60 Hz. Both laboratories used monocular 
eye tracking at 500  Hz using S-R Systems Eyelink 1000 
or 1000 + trackers. Each participant only took part in the 
experiment at a single laboratory.

Procedure
Eye tracking
Participants took part in the study individually. Par-
ticipants used a chin rest during all trials and were cali-
brated (using a nine-point system) prior to each session. 
The chin rest was adjusted so each participant’s gaze 
landed centrally on the computer screen when the par-
ticipant looked straight ahead. Calibration was accepted 
if the mean error was less than 0.5° of visual angle, with 
no error exceeding 1.0° of visual angle. Periodic recali-
brations ensured accurate recording of gaze position 
throughout the experiment; recalibrations occurred 
at the beginning of each block and within blocks when 
necessary. (The option to recalibrate was provided at the 
start of each trial.) For analysis purposes, interest areas 
were defined as the smallest rectangular area that encom-
passed any given image. An eye movement was classi-
fied as a saccade when its distance exceeded 0.5° and its 
velocity reached 35°/s (or acceleration reached 9500°/
s2). Viewing was binocular, but only the right eye was 
recorded.

Target category memorization and practice
During the first session, participants memorized the 
names of all target categories before performing any 
visual search trials; they performed two rounds of 
memorization and test. During memorization, partici-
pants viewed the full list of 20 target categories in a 
single alphabetized display, with a black box drawing 
their attention to each category name for 3  s before 
moving to the next category. After all categories were 
highlighted, participants completed a 40-trial old/new 
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memory test (half old), using the keyboard to indi-
cate whether the tested item was one that they were 
instructed to memorize. Accuracy was assessed after 
the second round of memorization and test. Partici-
pants could only continue to the visual search phase if 
they completed the memory test with 80% accuracy or 
better, else the memorization and test phase would be 
repeated. All participants performed the above crite-
rion on the first try.

Following memorization, participants completed a 
practice block of 53 visual search trials (with 13 tri-
als each for target-absent, 1-target, and 3-target tri-
als; there were 14 2-target trials). In the practice block, 
each target category appeared with equal frequency 
(i.e., four times), so that frequency effects could only 
arise in experimental blocks.

Visual search
In each session, participants completed five 40-trial 
experimental blocks of visual search, with equal use of 

the four trial types (i.e., 0–3 target trials). At the start 
of each block (not trial), participants were reminded of 
the 20 target categories (using words, not pictures) for 
which they would be searching. When they were ready to 
begin, they pressed any key on the keyboard. To initiate 
each trial, participants clicked the mouse, after which a 
centrally presented, gaze-contingent fixation cross was 
shown. After participants fixated the cross for 500  ms, 
it disappeared and was replaced by the 32-object visual 
search array. Search arrays were constructed by dividing 
the entire screen into an invisible 6 × 6 grid, from which 
32 (of 36 possible) locations were randomly chosen, with 
the provision that one cell within each screen quadrant 
remains empty. Precise target locations within each cell 
were jittered to ensure that a minimum of 1.5° visual 
angle separated items from each other and the edge of 
the display.

Within a single trial, targets could appear from across 
20 categories, and multiple (non-identical) exemplars 
from a single category could also appear (however, no 

Fig. 1  Target categories searched for by all participants, with corresponding frequency level. For each, three randomly chosen exemplars are 
displayed for demonstrative purposes, but each category was comprised of 16 possible exemplars in the experiment
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two distractors in any trial were from the same category). 
Participants indicated target selections by clicking on the 
pictures using the mouse. When pictures were selected, 
a black box was drawn around them to indicate that the 
computer detected the selection, but no indication was 
provided regarding whether the selected item was a tar-
get or distractor. Participants’ search was self-paced, and 
they terminated each trial by clicking on a “STOP” sign 
presented in the center of the display (see Fig.  2a for a 
sample trial progression). Participants’ goal was to gain 
as many “points” as possible over the experimental ses-
sion. They gained one point for every “hit” and lost one 
point for every “miss” and every “false alarm.” Although 
a maximum of three targets appeared in any trial, par-
ticipants were not told how many targets to expect on 
each trial and were not informed that target categories 
occurred with variable frequency.

Feedback
As shown in Fig.  2b, participants received trial-by-trial 
feedback during the practice block (which only occurred 
in the first session for each participant), so that they 
could adequately learn the target categories. After each 
practice trial, participants were shown the targets that 
appeared on that trial (if any), and the number of points 
they acquired. Points were reset to zero after the practice 
block. They were also told how many hits, false alarms, 
and misses occurred on that trial. During experimental 

blocks, feedback was only provided at the end of each 
block, at which point participants learned how many 
points they had acquired up to that point in that session 
(cumulatively across blocks; see Fig. 2c). They were also 
informed how many hits, misses, and false alarms they 
made. Information about specific categories and exem-
plars was not provided. This block-level feedback screen 
remained visible for as long as participants wished and 
therefore also served as a break between experimental 
blocks.

Results
For each participant, performance on all dependent 
variables was baseline-corrected relative to that partici-
pant’s own mean performance across all sessions. This 
allowed us to examine the development of search exper-
tise regardless of individual differences in performance, 
as reflected in the percentage change in performance 
over time (relative to the participant’s own mean perfor-
mance). Thus, analyses presented in text were conducted 
on “change percentages” for each individual session rela-
tive to that participant’s own grand average across all 
sessions. Because of this scaling, only the main effect 
of session and interactions with it are interpretable. For 
other main effects, please see the supplemental analyses 
on raw data values in “Appendix 2.” For clarity and trans-
parency, we plot group average data along with percent 
change data in the primary results, resulting in dual-axis 

Fig. 2   a Progression of events during a visual search trial. Borders drawn around objects indicate the participant selected them as targets. Note 
that the display is not drawn to scale, and 32 items were displayed on all trials. b The feedback that followed each practice trial. No feedback was 
present following experimental trials. c The feedback that followed each block of experimental trials
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figures: The left axis reflects percent change and the right 
axis reflects raw data. For all analyses, alpha level was 
set at 0.05, and multiple comparisons were subjected to 
Bonferroni corrections. Greenhouse–Geisser-corrected 
degrees of freedom are reported for any contrasts involv-
ing sphericity violations.

Behavior: accuracy and response times (RTs)
Because the overarching hypotheses predict that exper-
tise changes oculomotor measures, we treated analyses 
on behavioral measures as manipulation checks: Did 
accuracy and RT improve with accumulated experience? 
We examined search accuracy via hit rates (i.e., the num-
ber of targets correctly identified divided by the number 
present in the display)2 in a 14 (session) × 4 (target fre-
quency: least frequent, infrequent, frequent, most fre-
quent) RM ANOVA. We did not include the number of 
targets in the analysis because, within multiple-target 
trials, the targets could be drawn from one or more 
levels of target frequency, giving us uneven cells. The 
analysis revealed only a main effect of session, F(3.49, 
31.41) = 2.95, p = 0.04; ηp

2 = 0.25. As shown in Fig.  3, 
searchers became better and more consistent at find-
ing the target in the later sessions, relative to the earlier 
ones. These analyses suggest that observers developed 
the behavioral markers of expert-level performance and 
performed near ceiling by the later sessions. Analyses on 
raw hit rates confirmed no effect of target frequency3 (see 
Table 1; Fig. 14).

In our paradigm, expertise development can influence 
different aspects of the overall trial-level response time, 
including the latency to first target detection, the latency 
to click on all targets, and the overall time required for 
participants to terminate the trial. In the interest of brev-
ity, we only report analyses on first target detection and 
search termination RTs in text, as these provide insight 
into expertise effects on search efficiency and quitting 
thresholds, respectively (full analyses can be found in 
“Appendix 2”).

Although we did not manipulate set size, the analysis 
examining the latency to first target detection offers a 
way to explore the effect of effective set size. Specifically, 
if observers must examine approximately half of the dis-
played objects before locating a target in a single-target 
trial, their effective set size in a 32-object display is 32. By 
virtue of already having scanned half of the objects, how-
ever, their effective set size for a two-target trial becomes 
16, which then becomes (approximately) 8 for a three-
target trial. We examined search efficiency in a 3 (effec-
tive set size) × 14 (session) RM ANOVA, which revealed 
a main effect of session, F(13, 117) = 39.10, p < 0.011, 
ηp

2 = 0.81, but no interaction, p = 0.53.4 For ease of inter-
pretation, we plot raw search slopes in Fig.  4, showing 
search times as a function of effective set size in the first, 
middle, and final sessions. As shown in Fig.  4, search 

Fig. 3  Average search hit rates (circles) and percent change in hit 
rates (bars) across sessions. Note that the percent change data are 
scaled relative to each participants’ grand average, but the raw values 
reflect group averages. Error bars reflect ± 1 standard error

Fig. 4  Average raw latency to the first target detection across 
effective set sizes 8, 16, and 32 for sessions 1, 7, and 14. Error bars 
reflect ± 1 standard error

2  Analyses were not conducted on false alarm rates due to the low number of 
false alarms (0.5–3.5%) per session.
3  Although frequency effects are often observed in the literature, we did not 
predict them in our study because multiple targets from a given frequency 
category could appear within a trial. We observed frequency effects in some 
of the raw data analyses presented in Appendix (prevalence effects, per se, 
were precluded by the task-wide high prevalence of targets, of course).

4  Note that, because we analyzed percentage change relative to the partici-
pants’ overall mean, a main effect of effective set size is not possible in this 
analysis. Please see the raw analyses in “Appendix 2” for such effects.
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slopes were cut by more than half across the first and 
seventh sessions, after which they continued to decrease, 
albeit at a smaller rate, until session 14.

RTs may capture different phases of search, such as tar-
get identification or quitting decisions, each of which can 
be made more efficient by expertise development. Our 
paradigm also allowed us to isolate an additional cognitive 
process, search termination decisions. Because observers 
never knew how many targets would appear in any given 
trial, the latency between their final target detection and 
when they clicked “stop” in the 1- and 2-target trials can 
reveal insights into their quitting decisions (no more than 
3 targets ever appeared in a trial, so quitting decisions in 
3-target trials are less informative). Moreover, the latency 
to click the stop sign in target-absent trials may reflect a 
more global estimate of quitting thresholds (e.g., Chun 
and Wolfe 1996). We examined these percentage change 
click times in separate RM ANOVAs on session (both 
target-present and target-absent analyses) and number 
of targets (target-present trials only). Analysis on target-
absent quitting RTs revealed a main effect of session, 
F(13, 117) = 11.10, p < 0.001, ηp

2 = 0.55. As shown in the 
right panel of Fig. 5, sessions 1 and 2 produced the slow-
est search termination decisions, which reliably differed 
from subsequent sessions (p < 0.05). By session 3, quitting 
times became stable and did not reliably differ. Analyses 
on target-present quitting RTs revealed a reliable inter-
action, F(13, 117) = 3.52, p = 0.01, ηp

2 = 0.28. As shown 
in the left panel of Fig. 5, this interaction was driven by 
relatively slower decision times for 1-target trials in the 
earliest sessions. As in the target-absent trials, decision 
speeds improved across the first three sessions, after 
which they became stable. Together, the target-absent 
and target-present data suggest that expertise may not 
necessarily speed-search termination decisions or affect 
quitting thresholds, instead reflecting a stable decision-
making mechanism.

Eye‑tracking metrics
Because our paradigm was not designed to elicit fre-
quency effects, we observed no effect of target frequency 
on accuracy, and we collapsed items into two discreet 
categories for eye-tracking analyses, targets and distrac-
tors. Frequency effects can, however, be found in several 
raw analyses reported in “Appendix  2”.5 Although eye-
tracking affords many variables, we restricted our focus 
to visits (i.e., how often the eyes entered an interest area 
around targets or distractors), dwell times (i.e., how long 
visited items were viewed), FVF, and saccade amplitude.

Visits
Visits were defined as the number of times the eyes 
entered a given interest area divided by the total num-
ber of objects of that type (target or distractor). This 
calculation included zeroes, for rare instances in which 
a displayed object was not examined. Importantly,  vis-
its  are consistent with, but not identical to, the number 
of fixations a given interest area received. For instance, if 
the eyes enter an interest area and commit two fixations 
before leaving the area, that would count as two fixations 
but only one visit. In this way, visits can be interpreted as 
the number of times each item was examined, irrespec-
tive of small corrective fixations that may have been com-
mitted within the interest area.

As expertise develops, experts preferentially view 
target-relevant locations (Brams et  al. 2019). To deter-
mine whether this was true in observers in the present 
investigation, we examined participants’ baseline-cor-
rected average number of visits to target versus distrac-
tors in a 2 (Item Type: Target, Distractor) × 14 (session) 
RM ANOVA. There was a main effect of session, F(13, 
117) = 9.17, p < 0.01, ηp

2 = 0.51, which revealed that the 

Fig. 5  Decision RTs (circles) and percent change in RT (bars) across sessions for one-target (left panel), two-target (middle panel), and target-absent 
(right panel) trials. Error bars reflect ± 1 standard error

5  Although we do not report raw analyses in text, it is worth nothing that a 
4 (target frequency) × 14 (session) RM ANOVA on average raw dwell times 
revealed the predicted main effect of target frequency, F(1.73, 15.58) = 49.61, 
p < .01, ηp

2 = .85. As frequency increased, average dwell times decreased. Tar-
get frequency did not affect any other oculomotor measures.
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probability of fixating items decreased with increasing 
experience across sessions. This main effect, however, 
was qualified by a reliable interaction, F(13, 117) = 4.31, 
p < 0.01, ηp

2 = 0.32. As shown by the bar graphs in Fig. 6, 
which represent how participants’ performance changed 
relative to their own grand average, the probability of fix-
ating on targets and distractors changed across sessions. 
Simple main effects confirm that distractors received 
relatively more fixations than targets in sessions 1 and 
2 (FS1 = 10.38, p = 0.01; FS2 = 6.46, p = 0.03) but that tar-
gets received relatively more fixations than distractors in 
session 14 (FS14 = 14.47, p = 0.01). Although targets are 
obviously more likely to be viewed than distractors in the 
raw data (circles in Fig. 6), the percent change data reveal 
how these viewing preferences change across sessions.

Dwell times
For each item visited, we calculated the average amount 
of time participants spent on each visit as a measure of 
object identification. Because experts are better able to 
rely on memory processes during search (e.g., Brock-
mole et al. 2008), dwell times should change as observers 
accrue experience: Distractors should be viewed for less 
time, relative to targets, although all dwell times should 
generally decrease (reflecting enhanced object identifica-
tion abilities). To evaluate these predictions, we exam-
ined baseline-corrected average dwell times in a 2 (Item 
Type) × 14 (session) RM ANOVA.6 We observed a main 
effect of session, F(13, 117) = 7.90, p < 0.01, ηp

2 = 0.47: 

Fig. 6  Average number of visits (circles) and percent change in average number of visits (bars) across sessions for targets (left graph) and distractors 
(right graph). Error bars reflect ± 1 standard error

Fig. 7  Average dwell time (circles) and percent change average dwell time (bars) across sessions for targets (left graph) and distractors (right 
graph). Error bars reflect ± 1 standard error

6  As shown by the circles in Fig. 7, targets received longer dwell times than 
distractors, but this is an artifact of the design: Participants were required to 
fixate, and then click on, targets, thereby encouraging longer dwell times. For 
this reason, we emphasize the baseline-corrected data (bar graphs).
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Relative to their grand average dwell times, partici-
pants’ dwell times decreased across sessions (Fig.  7). 
We also, however, observed a reliable interaction, F(13, 
117) = 4.12, p < 0.01, ηp

2 = 0.31. Simple effect tests con-
firm that the interaction was in the predicted direc-
tion: In early sessions, distractors were looked at longer 
than average, relative to targets (FS1 = 9.18, p = 0.01; 
FS4 = 12.99, p = 0.01), but by session 14, this relationship 
flipped (FS14 = 9.60, p = 0.01), which may reflect a change 
in quitting threshold.

Functional viewing field (FVF)
Relative to novices, experts are better able to quickly 
direct attention to relevant screen locations while ignor-
ing distracting or irrelevant information (Brams et  al. 
2019, 2020). The extended visual span implied by such 
results may arise from task-specific experience or it 
may be related to self-selection biases (e.g., those with 
an extended visual span may be drawn to professions in 
which that ability would be useful). To examine whether 
visual span extends as expertise develops, we exam-
ined changes in FVF. To calculate initial FVF, we used 
the method described by Young and Hulleman (2013),7 
which involves first drawing invisible circles with 1º of 
visual angle radii centered on all fixations (e.g., Fig. 8, left 
panel). The radius is then increased by 1◦ until a given 
proportion of objects fall within one of the circles (Fig. 8, 
middle and right panels), with each object only counted 
once across all fixations (i.e., if an object falls within the 
circle drawn around more than one fixation, that object 
is still only counted once). The formula for calculating 
the critical proportion is (set size + 1)/(number of tar-
gets + 1). For a set size of 32, that means that 16.5, 11, 
and 8.25 objects must be encircled on 1-, 2-, and 3-target 
trials, respectively. Because an observer cannot fixate a 
partial object, the criterion for 1-, 2-, and 3-target trials 

was rounded up to 17, 11, and 9 objects, respectively. 
This corresponds to just more than 50% of the objects 
on 1-target trials and comparatively less when multiple 
targets are present in the display (34.38% and 25.78% of 
objects for 2- and 3-target trials, respectively). For exam-
ple, in the hypothetical 18-item display in Fig.  8, the 
critical proportion for a single-target trial would be 50% 
(9 items). The FVF is the size of the fixation radii that 
encompasses 9 items (Fig. 8, right panel).

To determine whether experience and the number of 
targets in the display influence observers’ initial FVF sizes, 
we examined FVF in a 3 (number of targets) × 14 (session) 
RM ANOVA. This analysis confirmed a reliable effect of 
session, F(4.49, 40.18) = 22.18, p < 0.001; ηp

2 = 0.71, and 
a reliable interaction between session and number of tar-
gets, F(4.47, 40.25) = 5.6, p = 0.001; ηp

2 = 0.38. Observers’ 
ability to process multiple objects from a single fixation 
increased with experience, which was reflected in a per-
centage increase in FVF size across sessions. As shown in 
Fig. 9, the interaction was characterized by greater session-
by-session stability for trials including two targets relative 
to trials including one or three targets.

Although the FVF changed with accumulated experi-
ence, the measure has not been without criticism (e.g., 
Kristjánsson et  al. 2017), and alternative estimation 
procedures exist. One alternative to FVF calculations 
involves measuring saccade amplitudes: With a larger 
visual span, observers are able to execute higher ampli-
tude saccades, covering a greater portion of the viewing 
area. The benefit of measuring saccade amplitudes lies in 
its within-trial flexibility: Whereas our calculated FVF 
measure assumes that the FVF remains stable through-
out the trial, saccade amplitudes can be measured 
throughout the duration of trials, allowing saccades to 
be labeled based on search phase. In this way, we identi-
fied three trial periods during which FVF might change 
with the development of expertise8: (1) At the initiation 

Fig. 8  Hypothetical 18-item display for a single-target search. To calculate FVF, circles are drawn around each fixation point, beginning with a radius 
of 1 degree (left panel). The radius of the circle is gradually increased until 50% of the items fall within one of the circles (right panel). Note The figure 
is not drawn to scale

8  We are grateful to Jeremy Wolfe for this suggestion.
7  We are grateful to Johan Hulleman (personal communication) for assistance 
with these calculations.
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of the trial, (2) during the active searching portion of the 
trial, and (3) when a fixation is first directed to a target. 
The amplitude of the first saccade off the central fixation 
cross captures the FVF at the beginning of the trial; larger 
first saccade amplitudes imply a greater pre-attentive vis-
ual span. We operationalized searching saccades as those 
occurring between 2 and 9 saccades prior to the one 
directing attention to the target, and targeting saccades 
as the final saccade directing attention to the target. Fig-
ure  10 shows the proportion of saccade amplitudes for 
each of these saccades, separately and collapsed together, 
as a function of accumulating experience (sessions 1, 7, 
and 14). To determine whether the distributions shown 
in each panel of Fig.  10 differed, we conducted a series 
of Kolmogorov–Smirnov (K–S) tests (Holliday 2017), 

comparing the saccade distributions for the first, middle, 
and final sessions within each saccade category. Despite 
the apparent distributional shift in the first saccade 
amplitudes (Fig.  10, upper left panel), none of the K–S 
tests revealed any reliable differences, all ps > 0.3.

Although the distributions of the saccade amplitudes 
in each panel of Fig.  10 did not change with experi-
ence, we analyzed the percentage change to participants’ 
mean saccade amplitudes for their first, searching, and 
targeting saccades in separate RM ANOVAs on all 14 
sessions.9 Consistent with the K–S tests on to the first, 
middle, and final sessions, analyses on the first saccade 
amplitude revealed no effect of session, F(13, 117) = 0.67, 

Fig. 9  Functional viewing field (circles) and percent change in functional viewing (bars) across sessions for one- (left graph), two- (middle graph), 
and three-target (right graph) trials. Error bars reflect ± 1 standard error

Fig. 10  Proportion of first (upper left), searching (upper right), targeting (lower left), and overall (lower right) saccades by their amplitude in 
sessions 1 (red circles), 7 (green squares), and 14 (blue triangles)

9  A complementary analysis conducted on median saccade amplitudes yielded 
identical effects.
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p = 0.79; ηp
2 = 0.07. Both searching and targeting sac-

cade amplitudes reliably changed across sessions, FS(13, 
117) = 22.00, p < 0.001; ηp

2 = 0.71; FT(13, 117) = 8.10, 
p < 0.001; ηp

2 = 0.47. As shown in Fig.  11, searching and 
targeting saccade amplitudes increased with increasing 
experience, reflecting a gradual expansion of the FVF 
during search phases following the initial saccade off the 
fixation cross.

Discussion
The present study examined behavioral and oculomo-
tor measures of expertise development in a multiple-
target hybrid search task conducted longitudinally over 
the course of a single semester. With practice, observers 
became faster and more accurate at searching for cat-
egorically defined targets, as would be expected in many 
real-life domains (e.g., sports, medicine, security screen-
ing).10 The development of this expertise also changed 
the way that viewers examined the visual field: With 
growing experience, observers needed to visit objects less 
frequently, they were less likely to view distractors, they 
viewed objects for shorter durations, and they showed 
evidence of an expanding visual span, particularly when 
searching for and locating items. Although abundant 
research has compared novice to expert search behav-
iors (e.g., Bilalić et  al. 2011; Brams et  al. 2020; Godwin 
et al. 2015; Reingold et al. 2001; Reingold and  Sheridan 
2011; Van Meeuwen et al. 2014, among many others), the 
present study adopted a within-subjects design to reveal 
how experience modifies scanning behaviors while elimi-
nating the possibility of innate between-group differences 
in skill or interest level.

Changes in gaze behavior underlie the perceptual-cog-
nitive benefits enjoyed by experts over novices (Brams 
et al. 2019), and the present research suggests that these 
changes are learned, rather than inherent individual dif-
ferences. Brams et  al. (2019) conducted a meta-analysis 
across three domains of visual search expertise, includ-
ing sports (e.g., refereeing), medicine (e.g., radiology), 
and other areas (e.g., air traffic control, chess). Across 
domains, experts located targets more quickly, preferen-
tially examined target-relevant scene regions, decreased 
viewing times, and increased saccade amplitudes. Our 
experiment replicates and adds to this growing litera-
ture, showing that these changes do not exclusively sepa-
rate groups of experts from groups of novices. Instead, 
these changes occur gradually as a novice becomes an 
expert. In the present investigation, observers gradually 
decreased their dwell times and visited across sessions, 
and their eye movements revealed experience-depend-
ent increases in saccade amplitudes and visual spans (via 
FVF).

Understanding how search skills become refined with 
experience may inform the development of training pro-
tocols or assessments. In a recent training study, Sha 
et  al.  (2020) found that novices’ ability to spot tumors 
in chest radiographs improved across four days of train-
ing, but this ability only transferred to novel (untrained) 
radiographs when the training images included both 
the tumor and some background. Training with images 
depicting only the tumor or only the background yielded 
improvement restricted to trained images. That observ-
ers need both local properties (the tumor) and its con-
trast with surrounding regions to best perceptually learn 
suggests that restricted viewing conditions do not benefit 
learning. They also do not seem to benefit performance 
at testing. Although presenting observers with limited 
viewing windows decreases overall perceptual load, it has 
a negative impact on search performance, particularly 
in conditions that encourage larger functional viewing 

Fig. 11  Raw saccade amplitudes (circles) and percent change in saccade amplitudes (bars) across sessions for initial saccades (left panel), searching 
saccades (middle panel), and targeting saccades (right panel). Error bars reflect ± 1 standard error

10  It is worth noting, however, that observers in our study did not begin as 
true novices (i.e., performing at or below chance prior to training), as might 
be expected in some professional domains.
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fields (e.g., Young and Hulleman 2013). In the present 
study, and many others (Chin et  al. 2018; Drew et  al. 
2013; Evans et al. 2013a, b; Evans et al. 2016; Nodine et al. 
1999), experience confers the ability to utilize more of the 
visual display at any one time, suggesting that training 
or assessment methods that restrict observers’ views, or 
highlight small to-be-searched regions, will be of limited 
utility. Indeed, this may be one reason why computer-
assisted detection methods often fail to improve target 
detection (e.g., Drew et al. 2020; Fenton et al. 2011; Phil-
potts 2009).

If image restriction techniques cannot be used to 
streamline the development of expertise, what can be 
done? Kramer et  al. (2019) discussed three aspects of 
search performance that can be trained in professional 
searchers: (1) Efficient use of the technology, (2) tar-
get and distractor recognition, and (3) search strate-
gies. Although technological training is important, it is 
beyond the scope of the present research. Instead, our 
results potentially impact the remaining two aspects of 
performance. Clearly, perceptual learning is important 
for target and distractor recognition (Sha et  al. 2020), 
and our results confirm that searchers gradually learn to 
recognize both targets and distractors, visiting them less 
often as experience accumulates. Although we did not 
give observers search strategy instructions, the saccade 
amplitude and FVF analyses suggest that search strate-
gies may have changed with increased experience, open-
ing up the possibility that this behavior can be directly 
trained or measured.

Although training search strategies generally focus on 
teaching observers where to look or how to minimize 
decision errors (Kramer et  al. 2019), measuring search 
strategies may hold promise for identifying expert-level 
performance. For example, with growing perceptual 
experience and span (Brams et  al. 2020) in a particular 
domain, experts may begin to rely more on passive cogni-
tive strategies than active ones. In passive search, observ-
ers make fewer, but more sweeping, eye movements, 
allowing targets to “pop out” rather than exerting cogni-
tive control over attentional guidance (Madrid and Hout 
2019; Smilek et  al. 2006; Watson et  al. 2010). Whether 
experts adopt a passive strategy, or merely have eye 
movement characteristics consistent with passive search, 
remains an open question.

By monitoring observers’ eye movements as experi-
ence accumulated, we were able to estimate changes 
in each phase of visual search, from pre-attentive pro-
cessing through guidance and, ultimately, object iden-
tification and search termination. During pre-attentive 
processing, observers’ merely register basic features, such 
as color or line orientation (Wolfe and Utochkin 2019). 
Should this phase of search be facilitated by growing 

expertise, we would have expected first saccade ampli-
tudes to increase, reflecting observers’ ability to pre-
attentively take in more of the visual display. We did not 
observe this. Instead, we found that subsequent phases 
of search were facilitated by expertise. With experience, 
observers’ searching and targeting saccades gradually 
became longer, revealing two novel insights into search 
performance: (1) FVF size changes within search trials 
and (2) FVF size changes across search trials. Although 
the FVF has been shown to change with task demands 
(e.g., Hulleman and Olivers 2017) and across groups of 
experts and novices (e.g., Brams et al. 2020), our research 
shows that it also changes within individuals as a func-
tion of experience, both within-individual search trials 
and more globally, as experience develops. These changes 
to the FVF may have also permitted observers to direct 
attention to distracting objects less often, making search 
more efficient. In addition to lengthening the searching 
and targeting saccade amplitudes, experience also refined 
the final phases of visual search: object identification and 
search termination. Both object identification and search 
termination became faster with experience, which is con-
sistent with expertise effects across many domains (see 
Brams et  al. 2019) and with prior research showing the 
importance of memory for visual search (e.g., Brockmole 
et al. 2008).

In sum, we found that, as searchers gained expertise, 
they became better able to direct their attention to rel-
evant locations, reflecting increased reliance on memory 
and/or an extended visual span. This is notable, given that 
searchers looked for twenty categories simultaneously 
among thousands of different distractor pictures, with no 
ability to predict which particular target features would 
be useful on any given trial. The present study revealed 
that expertise in visual search may refine multiple atten-
tional, perceptual, and oculomotor skills, including the 
allocation and restriction of attention, object identifica-
tion, and the speed and amplitude of saccadic eye move-
ments. This investigation also uncovered new questions 
about the development of expertise in visual search, and 
whether these gaze behaviors are amenable to training. 
For example, future work will be needed to determine the 
extent to which expertise-induced changes in visual span 
can be affected by training or other manipulations (e.g., 
global/local bias inductions), and whether these changes 
mitigate the LPE. Moreover, experience-based increases 
in visual span have important implications for theories 
of visual search, which may need to incorporate future 
model adjustments to address this modifiable parameter.
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Appendix 1
See Figs. 12 and 13.

Fig. 12  Forty (of 80) distractor categories encountered by participants (see also Fig. 13). For each, a single representative exemplar is displayed 
for demonstrative purposes, but each category was comprised of 16 possible exemplars in the experiment. Participants were not informed of the 
category names for distractors

https://osf.io/emhrv/?view_only=c740e56448dc45a9acb051238ac20fb7
https://osf.io/emhrv/?view_only=c740e56448dc45a9acb051238ac20fb7
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Appendix 2
See Tables 1, 2, 3, 4 and 5 and Figs. 14, 15 and 16.

Fig. 13  Forty (of 80) distractor categories encountered by participants (see also Fig. 12). For each, a single representative exemplar is displayed 
for demonstrative purposes, but each category was comprised of 16 possible exemplars in the experiment. Participants were not informed of the 
category names for distractors

Table 1  Results of analyses on raw value accuracy measures

*  Significant effects

Dependent variable Effect df F p ηp
2

Points acquired Session* 2.72, 24.5 8.41 < 0.001 0.483

Trial-level hit rate Session (S)* 3.49, 31.43 18.65 < 0.001 0.674

Target frequency (TF) 1.93, 17.23 0.925 0.412 0.093

S × TF 4.49, 40.41 1.673 0.169 0.157
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Table 2  Results of analyses on multiple percentage change RT measures

*  Significant effects

Dependent variable Effect df F p ηp
2

Latency to first target Number of targets (NT) 2, 18 0.01 0.987 0.001

Session (S)* 13, 117 39.10 < 0.001 0.81

NT × S 26, 234 0.95 0.534 0.01

Latency to all targets Number of targets (NT) 2, 18 2.18 0.142 0.19

Session (S)* 13, 117 57.19 < 0.001 0.86

NT × S* 26, 234 2.86 0.022 0.24

Trial termination Number of targets (NT) 2, 18 1.57 0.235 0.15

Session (S)* 13, 234 9.71 < 0.001 0.52

NT × S* 26, 234 3.29 0.011 0.27

First target click Target frequency (TF) 3, 27 1.80 0.183 0.17

Session (S)* 13, 117 38.41 < 0.001 0.81

TF × S 39, 351 1.74 0.124 0.16

Second target click Target frequency (TF) 3, 27 0.872 0.433 0.09

Session (S)* 13, 117 34.55 < 0.001 0.79

TF × S 39, 351 1.72 0.125 0.16

Third target click Target frequency (TF) 3, 27 1.88 0.222 0.27

Session (S)* 13, 117 25.37 < 0.001 0.84

TF × S 39, 351 1.44 0.252 0.22

Table 3  Results of analyses on raw value RT measures

*  Significant effects

Dependent variable Effect df F p ηp
2

Latency to first target Number of targets (NT)* 2, 18 152.55 < 0.001 .94

Session (S)* 13, 117 25.93 < 0.001 0.74

NT × S* 26, 234 9.32 < 0.001 0.51

Latency to all targets Number of targets (NT)* 2, 18 365.03 < 0.001 0.976

Session (S)* 13, 117 40.1 < 0.001 0.817

NT × S* 26, 234 2.68 0.03 0.229

Latency to trial termination Number of targets (NT)* 2, 18 26.87 < 0.001 0.749

Session (S)* 13, 117 7.61 0.002 0.458

NT × S 26, 234 1.33 0.279 0.128

First target click Target frequency (TF)* 3, 27 46.93 < 0.001 0.84

Session (S)* 13, 117 25.37 < 0.001 0.74

TF × S 39, 351 0.96 0.457 0.09

Second target click Target frequency (TF)* 3, 27 40.2 < 0.001 0.82

Session (S)* 13, 117 22.59 < 0.001 0.72

TF × S 39, 351 1.03 0.416 0.10

Third target click Target frequency (TF)* 3, 27 23.14 < 0.001 0.82

Session (S)* 13, 117 21.37 < 0.001 0.81

TF × S 39, 351 1.43 0.258 0.22

Target-absent trial termination Session (S) 3, 117 8.50 < 0.001 0.49
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Table 4  Results of analyses on raw value eye-tracking measures

*  Significant effects

Dependent variable Effect df F p ηp
2

Visits Item type (IT)* 1, 9 59.58 < 0.001 0.87

Session (S)* 13, 117 8.60 < 0.001 0.49

IT × S 13, 117 1.13 0.339 0.11

Dwell times Item type (IT)* 1, 9 211.69 < 0.001 0.96

Session (S)* 13, 117 3.70 < 0.001 0.29

IT × S 13, 117 1.48 0.134 0.14

Functional viewing field Number of targets (NT)* 1.18, 10.6 18.73 0.001 0.68

Session (S)* 4.41, 39.66 23.54 < 0.001 0.72

NT × S* 3.69, 33.24 6.47 0.001 0.42

Table 5  Results of  analyses on  raw value saccade 
amplitudes

*  Significant effects

Saccade(s) Effect df F p ηp
2

First Session 3, 117 0.64 0.82 0.07

Searching Session* 3, 117 20.3 < 0.001 0.69

Targeting Session* 3, 117 8.13 < 0.001 0.47

Fig. 14  Total points accumulated across sessions (left panel) and hit rates across sessions as a function of target frequency (right). Error bars are 
standard error

Fig. 15  Average raw (circles) and percent change (bars) click time RT across sessions for locating the first target (left panel), the final target (middle 
panel), and the trial-terminating stop sign (right panel). Error bars reflect ± 1 standard error
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