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Examining the effects of passive and active
strategies on behavior during hybrid visual
memory search: evidence from eye tracking
Jessica Madrid and Michael C. Hout*

Abstract

Hybrid search requires observers to search both through a visual display and through the contents of memory in
order to find designated target items. Because professional hybrid searchers such as airport baggage screeners are
required to look for many items simultaneously, it is important to explore any potential strategies that may
beneficially impact performance during these societally important tasks. The aim of the current study was to
investigate the role that cognitive strategies play in facilitating hybrid search. We hypothesized that observers in a
hybrid search task would naturally adopt a strategy in which they remained somewhat passive, allowing targets to
“pop out.” Alternatively, we considered the possibility that observers could adopt a strategy in which they more
actively directed their attention around the visual display. In experiment 1, we compared behavioral responses
during uninstructed, passive, and active hybrid search. We found that uninstructed search tended to be more active
in nature, but that adopting a passive strategy led to above average performance as indicated by a combined
measure of speed and accuracy called a balanced integration score (BIS). We replicated these findings in
experiment 2. Additionally, we found that oculomotor behavior in passive hybrid search was characterized by
longer saccades, improved attentional guidance, and an improved ability to identify items as targets or distractors
(relative to active hybrid search). These results have implications for understanding hybrid visual search and the
effect that strategy use has on performance and oculomotor behavior during this common, and at times societally
important, task.
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Significance
People routinely perform tasks whereby they must look
for many items at once; for instance, scanning the gro-
cery store for all the items on one’s list. Moreover, pro-
fessional visual searchers such as airport baggage
screeners are tasked with the difficult job of looking for
many items at once (e.g., weapons and all manner of
prohibited items), and must be both fast and accurate at
their jobs. In these scenarios, the task requires a visual
search through the local environment (e.g., the grocery
store, an x-ray of luggage), and a simultaneous search
through memory (e.g., the list of items to be purchased,
the set of all prohibited items). Our research suggests
that during such tasks, it may be in the searcher’s best

interest to adopt a passive approach, whereby sought-
after items are allowed to “pop into focus,” rather than a
more active approach, whereby the searcher tries to ef-
fortfully direct their attention around in space. The spe-
cific circumstances in which passive strategy adoption is
optimal, however, will depend on the extent to which
the searcher can tolerate a small decrement in accuracy
in exchange for a large increase in speed.
Many situations in daily life call upon us to search

through a list of items in memory while also searching
for these items in the visual environment. For instance,
imagine that you are part of a search and rescue team
looking for an individual lost in a heavily wooded area.
Anything left behind by this individual could serve as a
clue to their whereabouts. In this instance, you must
search through your memory of potentially useful (or
likely) clues - food wrappers, articles of clothing, vehicle
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keys, notes, maps, pill bottles, camping gear, etc. - while
also scanning for these items in the visual environment.
Alternatively, imagine you have the important and high-
stakes profession of airport baggage screening. Here,
under considerable pressure of time and performance,
you must search through complicated scans of travelers’
luggage, simultaneously looking for filled water bottles,
guns, knives, improvised explosives, ammunition, and all
other manner of dangerous and prohibited items. These
types of tasks are referred to as hybrid visual memory
search, or more recently (and simply), “hybrid search”
(Schneider & Shiffrin, 1977; Wolfe, 2012). While the
question of how people search for several objects at the
same time has been studied in the past (Schneider &
Shiffrin, 1977; Sternberg, 1966), these investigations have
typically focused on a relatively small number of target
items (i.e., 1–6 items).
Recently, researchers have delved into how people search

for as many as 100 distinct targets at once (Wolfe, 2012).
However, no one has yet examined how adopting a specific
cognitive strategy affects search performance during hybrid
visual search. This is an important gap in the literature to
fill, as the high demands of a hybrid search task may be
lessened - or, the various sub-components of search behav-
ior like attentional guidance or object identification may be
improved - through the adoption of a particular type of
strategy. It is also especially important to understand the
potential impact of strategy use for professional visual
search scenarios broadly construed, as adopting simple cog-
nitive strategies may be an efficient and cost-effective way
to improve performance during societally important search
tasks. Past research indicates that adopting a passive search
strategy (i.e., letting a search target “pop” into mind) rather
than actively pushing one’s attention around a display, leads
to search behavior that effectively balances speed and ac-
curacy (Smilek et al., 2006a; Smilek et al., 2006b; Watson,
Brennan, Kingstone, & Enns, 2010), particularly during dif-
ficult search tasks. Smilek et al. (2006b) speculated that pas-
sive search strategies reduce reliance on cognitive control,
and instead induce more rapid and automatic attentional
processing during search. Prior research on visual search
strategies has often focused on explicit scanning methods
(Auffermann, Little, & Tridandapani, 2015; Nickles, Sacrez,
& Gramopadhye, 1998; Pradhan, Pollatsek, Knodler, &
Fisher, 2009). For example, Auffermann et al. (2015) imple-
mented a chest radiograph search paradigm in which ob-
servers were instructed to systematically move their eyes
from the center of the image out towards the edge while
looking for cancerous nodules. One goal of the current
paper is to determine if a strategy that does not specify a
particular scanning pattern will also beneficially affect visual
search performance.
Visual search has long been a useful way to investigate

the distribution of visual attention. For instance, Treisman

and Gelade’s (1980) theoretical framework, Feature Inte-
gration Theory (FIT), investigated how attention is de-
ployed during conjunctive visual search tasks. More
recently, a number of researchers have acknowledged the
flexible and adaptive nature of attentional deployment
(Belopolsky & Theeuwes, 2010; Belopolsky, Zwaan,
Theeuwes, & Kramer, 2007; Treisman, 2006). Treisman
(2006) proposed that the type of information an observer
can gather about stimuli in a visual array depends on the
size of the attentional window. For example, focused at-
tention provides information about the features of a par-
ticular object, while distributed attention provides more
global information about the scene. Germane to the
current study, it may be the case that adopting a specific
search strategy affects the size of the attentional window,
and therefore the way that attention is distributed during
hybrid search.

Passive and active search strategies in visual search
Several previous studies have found that participants who
are given an explicit cognitive strategy display marked dif-
ferences in visual search performance (Smilek et al.,
2006b; Watson et al., 2010), object categorization (Jacoby
& Brooks, 1984; Whittlesea, Brooks, & Westcott, 1994),
and executive function (Bourrier, Berman, & Enns, 2018),
compared to uninstructed performance. Of particular
interest to the current investigation are those studies that
have investigated the distinction between passive and ac-
tive strategies in visual search. For example, in work con-
ducted by Smilek et al. (2006a), participants were trained
to associate verbal labels (e.g., “elephant”, “pencil”) with
simple, meaningless shapes. Participants were then asked
to identify and localize the unique shape in an array of dis-
tractors. This experiment was intended to conceptually
replicate the relationship between the categorical mem-
bership of a search item and search efficiency, using a
novel approach. However, the anticipated effect was un-
covered only when Smilek, Dixon, and colleagues per-
formed a series of post-hoc tests on the trials, wherein
participants reported spontaneously adopting a “passive”
search strategy, in which they let the target item “pop out”
by exerting less effort to actively locate it. In a follow-up
experiment (Smilek et al., 2006a), participants were asked
to complete the same aforementioned task, but were ex-
plicitly instructed to adopt either an active or passive
search strategy. Results showed that the categorical mem-
bership of both targets and distractors only influenced
search efficiency (defined in this case as the slope of the
(RT) time by set size function) when participants utilized
a passive search strategy. In light of these findings, the au-
thors proposed that passive search strategies lead to an
increased (and unconscious) tendency towards parallel
processing.
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Having observed the beneficial effects of a passive
search strategy in several studies, Smilek et al. (2006b)
designed an experiment to test whether the differences
seen in active and passive strategies were dependent on
the difficulty of the visual search task. This question
closely relates to how strategy instructions influence be-
havior. If a passive strategy influences the amount of
cognitive control an observer exerts, then engaging in a
difficult search task should encourage more task control.
Therefore, adopting a passive search strategy should re-
duce this control to a greater extent than an active strat-
egy. In experiment 1, Smilek, Enns, and colleagues
(2006b) asked observers to use either a passive or active
strategy while searching for a circle that had a gap on
one side; distractors were circles that had gaps on both
sides. The difficulty of the task was manipulated by vary-
ing the width of the gap on the target circle (i.e., smaller
gaps are more difficult to detect). In order to assess if a
speed-accuracy tradeoff was present, the authors used a
combined measure of accuracy and RT called inverse ef-
ficiency, which is calculated by simply dividing mean
correct RT by the mean proportion correct (see Town-
send & Ashby, 1983). The results showed that a passive
strategy led to better inverse efficiency scores when the
task was comparatively difficult, supporting the hypoth-
esis that strategy influences search by relaxing cognitive
control.
In experiment 2, the authors (Smilek et al., 2006b)

probed this hypothesis further by actively inhibiting the
amount of executive control that was available during
the search task. To accomplish this, observers in a dual-
task condition were asked to remember an arrangement
of circles with gaps before each search trial. After the
search task, they were prompted to indicate if a test dis-
play matched the arrangement of circles that was viewed
at the beginning of the trial. Observers in a single task
condition were instructed to simply ignore the memory
displays. All observers engaged in both difficult and easy
search tasks. Importantly, explicit search strategies were
not provided. Instead, the difficulty of retaining the cir-
cle array in memory during the dual-task condition was
intended to mimic the loss of executive control that is
presumably given up during passive search. Analyses re-
vealed that engaging in a simultaneous memory task im-
proved inverse efficiency scores for only the difficult
search trials, a result that suggests better inverse effi-
ciency can stem from decreased executive control.
Therefore, it may be the case that adopting a passive
search strategy creates a similar tendency towards auto-
matic, parallel processing. The notion of parallel pro-
cessing in visual search is a notoriously difficult issue to
disentangle (see Cave & Wolfe, 1990; Godwin,
Walenchok, Houpt, Hout, & Goldinger, 2015; Thorton
& Gilden, 2007), and it is not the focus of the current

work to make a distinctly parallel vs. serial designation
regarding search performance. In this context, the term
as used by Smilek et al., (2006b) simply refers to a wider
processing of target meaning and category membership,
and may therefore also be referred to as parallel
selection.
A more recent study by Watson et al. (2010) analyzed

the effect of search strategy on oculomotor behavior.
Participants were assigned to either a passive or active-
search condition, in which their eye movements were re-
corded while they searched for a unique target. Stimuli
were the same circles with missing gaps that were used
in Smilek et al. (2006b), and results showed that search
performance produced a similar pattern of behavior:
RTs were shorter, but accuracy was lower for the
passive-search condition. A speed-accuracy trade off was
ruled out, the authors argued, through the calculation of
the inverse efficiency score for both groups; the logic be-
hind this measure is to account for speed-accuracy tra-
deoffs by simultaneously considering speed and accuracy
in a single measure (Townsend & Ashby, 1983). The
analysis of inverse efficiency determined that passive
search was more efficient overall, relative to active
search, despite the small decrement in accuracy in the
passive searchers.
More importantly, as concerns eye movements, the au-

thors found that passive searchers were more likely to
fixate the target item when three or fewer saccades were
made, and were less likely to make additional saccades
once the target had been fixated upon. Passive search
was also linked to longer initial saccade latency, and a
faster rate of response once the target had been fixated
upon. Regression analysis was conducted in order to de-
termine how strategy instructions affected oculomotor
behavior at the individual level. Importantly, a different
set of eye-movement behaviors characterized efficient
search in the two strategy modes. For both search
modes, the time between the first saccade to the target
and the response to the target was the best predictor of
inverse efficiency. However, better inverse efficiency for
passive searchers was characterized by larger saccadic
amplitude, whereas better inverse efficiency for active
search was associated with a higher rate of saccades.
Watson et al. (2010) emphasized that these results were
consistent with a “looking versus seeing” explanation,
proposing that passive searchers are better able to
process the information gathered from each fixation,
whereas active searchers tend to prioritize the scanning
of new spatial locations.
While the beneficial effects of passive search appear to

be robust, thus far, they have only been tested on a very
narrow range of simple visual search tasks. Moreover,
they must be interpreted with caution, because they tend
to be accompanied by a small decrease in task accuracy.
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More ecologically valid research that focuses on training
observers to adopt a specific search strategy has often
concentrated on teaching novices to scan visual arrays
using a particular search pattern (or “scan path”; see
Kramer, Porfido, & Mitroff, 2019 for a review). However,
as pointed out by Kramer et al. (2019), it can be difficult
to draw conclusions about the generalizability of search
strategy research due to the fact that strategies are often
tailored to a very specific type of search task (e.g., radiol-
ogists searching x-rays). More general cognitive strat-
egies such as active and passive search have yet to be
studied in complex tasks such as hybrid visual memory
search, or to have their potential for speed-accuracy tra-
deoffs more closely scrutinized; we accomplish both of
these things in the current study.

Hybrid search
Recently, researchers have begun to address the complex
issue of how visual attention and memory interact by
having participants memorize and search for a large
number of specific, photorealistic target items. Import-
antly, these types of hybrid search paradigms have ob-
servers look for a number of targets that far exceeds
what is widely accepted as the capacity of working mem-
ory (Cowan, 2001, also see Miller, 1956). For instance,
observers in Wolfe’s (2012) experiment began by mem-
orizing 1, 2, 4, 8, or 16 targets. During each trial, partici-
pants searched through a visual array of 1, 2, 4, 8, or 16
random distractor items, and indicated the presence or
absence of a target by key press. Analysis revealed that
RT increased in a linear manner with visual set size, but
increased linearly with the logarithm of memory set size.
Using this pattern of results, Wolfe (2012) successfully
extrapolated to more items, accurately predicting RTs
for tasks that involved looking for a memory set of 100
potential targets.
This logarithmic pattern has also been extended to

search for categories of objects rather than search for
specific items (e.g., Cunningham & Wolfe, 2014). The
use of categorical rather than pictorial targets provides
further ecological validity to this experimental paradigm,
as real-world search often involves looking for a broadly
defined target rather than a specific instance of a target
(i.e., any apples at the grocery store as opposed to a spe-
cific apple, or any coffee mug in the cabinet; see Hout,
Robbins, Godwin, Fitzsimmons, & Scarince, 2017). Add-
itionally, during such “categorical search,” observers can-
not simply rely on familiarity with a particular exemplar
in order to identify a target. Instead, they must rely on
stored mental representations to guide their search. In
Cunningham and Wolfe (2014), observers were asked to
memorize 1, 2, 4, or 8 categories, which were presented
as words. Observers were tasked with locating one target
from any of the memorized categories in subsequent

search displays. The results showed that while the task
was more difficult than searching for specific pictures of
objects, RTs still increased linearly with the logarithm of
memory set size.
Although hybrid search has been studied in a variety

of contexts, using varied stimuli and search conditions,
the mechanisms driving this complex form of search re-
main somewhat unclear. Wolfe, Boettcher, Josephs, Cun-
ningham, and Drew (2015) suggest the following three-
step system in order to explain the interaction of mem-
ory search and visual search. The authors note that these
stages should not be thought of as sequential, but rather
as occurring in simultaneous stages. In the first phase,
items are selected from the visual display as possible tar-
gets. Here, selection is assumed to be serial and guided
based on the relevant perceptual features of items in the
memory set. Phase two involves the identification and
categorization of the selected items. Selected items are
filtered through an identification “pipeline” of sorts, to
be categorized according to the contents of long-term
memory. Importantly, Wolfe et al. (2015) speculated that
this is a “massively parallel” process in which many
items are selected for search through long-term mem-
ory. The useful metaphor of a carwash is used to de-
scribe this process (p. 73). Cars may enter a car wash in
a serial fashion, but as the cleaning process takes several
minutes, multiple cars may be in the wash tunnel at the
same time. In the same way, multiple items from a visual
array may be in the process of identification at the same
time. In the third phase, the outcomes of the identifica-
tion phase are tested against the items in the memory
set to determine a positive or negative match. Wolfe
proposes that this search is logarithmic through acti-
vated long-term memory (ALTM). Note that while Cow-
an’s (1988, 1995) original concept of ALTM argues
against the existence of a limited short-term memory
store, here it is simply used to capture the idea of a sep-
arately searchable portion of long-term memory. This
memory search leads to either a target-present/target-
absent decision, or a return to phase one and additional
visual search.

The current study
Phase two of Wolfe’s proposed system describes a highly
parallel information processing stage in which many ob-
jects are simultaneously identified and categorized. Re-
call that in Watson et al. (2010) the authors posited that
passive search is characterized by a focus on “seeing”
(i.e., processing the information gained from a fixation)
rather than “looking” (i.e., prioritizing eye movements to
new locations). Therefore, there seems to be an em-
phasis on highly effective information processing both
when people perform hybrid search, and when they
adopt passive strategies during search for fewer items.
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Furthermore, hybrid search tasks meet some of the
same conditions outlined by Smilek et al. (2006b) as par-
ticularly important for a passive search strategy to yield
beneficial effects. Specifically, hybrid visual memory
search is a relatively difficult task. As opposed to search-
ing through simple arrays for a singular target, hybrid
search requires an observer to search for a very large
number of potential target items in arrays of similar dis-
tractors. This task can be made even more difficult by
asking observers to search categorically (Cunningham &
Wolfe, 2014). Additionally, observers must search
through the target items stored in activated long-term
memory as well as control their attention and eye move-
ments in order to search effectively through the visual
array. These concurrent tasks may be enough to encour-
age a loosening of executive control, and subsequently,
the use of a more passive search strategy (see Smilek et
al., 2006b). Based on these arguments, we hypothesized
that observers in hybrid search tasks may naturally adopt
a passive strategy (i.e., with no specific instructions to do
so by an experimenter) in order to effectively cope with
the high task demands.
Alternatively, it is possible that observers naturally de-

ploy their attention around the array in a manner more
similar to active visual search. This possibility would
align more closely with the description in Watson et al.
(2010) of an emphasis on “seeing” or prioritizing eye
movements to new locations. Wolfe, Drew, and
Boettcher (2015) describe the first stage of hybrid search
as involving the guided selection of a display based on
the basic features of the target items held in memory.
Indeed, one of the most interesting ambiguities sur-
rounding an explanation of the mechanisms driving hy-
brid search is how such a search could be guided in the
first place. It is generally acknowledged that search is
guided based on the perceptual features of a target item
(Egeth, Virzi, & Garbart, 1984; Hout & Goldinger, 2015).
In hybrid search, however, observers are required to
search for a large number of targets, each with its own
set of characteristic features. It therefore seems improb-
able that hybrid search could be simultaneously guided
by the features of every target in memory. However,
Cunningham and Wolfe (2014) found evidence that RTs
in a hybrid search task increase as a function of how
many items in the visual array share features with the
target items in memory. Adding items to the display that
did not share overlapping perceptual features (i.e., an
alphanumeric character distractor when the target was a
specific animal) did not incur a cost in RT, suggesting
these items were never selected for processing - a com-
pelling argument for the influence of guidance during
hybrid search.
There is no definitive link between guided search and

active search. However, these ideas share a number of

similarities that suggest some degree of similarity be-
tween the two. In guided search, attention is directed
based on the salient features of items in the visual envir-
onment. Active search strategy instructions ask ob-
servers to deliberately direct their attention while
searching for a target item. Deliberate search could take
the form of selecting items at random, or it could be the
case that observers rely upon the perceptual features of
their targets in order to “guide” their selection process.
The primary aim of the current investigation was to

determine if observers in a hybrid search task naturally
adopt a more passive or more active strategy. Our ultim-
ate goal was to better understand how attention is de-
ployed during this important and frequently conducted
task, with a secondary aim of understanding how cogni-
tive strategies could beneficially impact performance and
oculomotor behavior.

Experiment 1
In experiment 1, our observers memorized a relatively
large list of target categories, after which they searched
for any instance of an item from any of those categories
in displays populated with distracting non-targets (i.e.,
items from non-overlapping categories). After one block
of uninstructed search, observers either continued to
search without a specific strategy, or were asked to adopt
a passive strategy or an active strategy. Thus, experiment
1 was designed to provide a baseline of natural search
behavior (i.e., search without a specified strategy) to
which search using passive and active strategies could be
compared. We hypothesized that observers in hybrid
search tasks would naturally adopt a more passive strat-
egy. We reasoned that the difficulty of the task, as well
as the demands of balancing memory search and visual
search would lead to the loosening of executive control
characteristic of increased parallel processing (Smilek et
al., 2006b). To preview our results, despite our initial ex-
pectations, the data seemed to support a more active
mode of search on the part of our observers.

Method
Participants
One hundred and twenty students from New Mexico
State University participated in experiment 1. Students
participated for partial fulfillment of a course require-
ment or on a volunteer basis. All participants signed an
informed consent form prior to participation. Partici-
pants were required to have normal or corrected-to-
normal vision, be fluent readers of English, and self-
report normal color vision.

Power analysis
The two articles that most strongly motivated the current
research were those by Smilek et al. (2006b), and Watson
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et al. (2010). We attempted to rely on documented effect
sizes in these reports in order to estimate the number of
participants we would need for data collection. However,
some of the necessary information from these studies is
not available in the published work. First, Smilek et al.
(2006) do not report measures of effect size. It is possible
to calculate effect size from mean squared error (MSE),
but only when group means are also reported, which was
not the case for RT or inverse efficiency in this article (in
those cases, plots of the data were provided, but not pre-
cise mean values). Therefore, we estimated effect size from
this study using the accuracy data.
We calculated effect size for the effect of strategy (active

versus passive) on search accuracy from experiment 1 in
the study by Smilek et al. (2006b), using their table of
means, sample size, and reported MSE. We established
Cohen’s D of 3.10 (f = 1.55). Using this effect size, we con-
ducted an a priori power analysis in G*Power (Faul, Erd-
felder, Buchner, & Lang, 2009; Faul, Erdfelder, Lang, &
Buchner, 2007), implementing the statistical test for
“ANOVA: Fixed effects, special, main effects and interac-
tions.” We indicated desired power of 0.95, with three
groups (as we had active, passive, and no-strategy condi-
tions). Based on these inputs, G*Power indicated that the
required sample size was a mere 11 people. We also hoped
to conduct a power analysis using data from Watson et al.
(2010). Unfortunately, the analysis of variance (ANOVA)
results from that paper do not include measures of effect
size, nor the necessary information (i.e., tables of means,
MSE) to calculate it for ourselves.
We adopted a conservative approach in order to deal

with this lack of information. The effect size we calcu-
lated from Smilek et al. (2006b) was quite large, so we
performed a follow-up power analysis using the standard
conventions for large effect sizes. In this instance, we in-
dicated an effect size of f = 0.40, which is still a large ef-
fect (Cohen, 1988), but considerably less so than the one
we computed from the paper by Smilek et al. (2006b).
This analysis indicated a required total sample size of
100 participants. Thus, even with this comparatively
more conservative approach, the sample size of our
study (120) exceeded the sample size necessary to
achieve adequate power.

Design
Three levels of search strategy (no strategy, passive, ac-
tive) were manipulated between subjects. There were
two blocks of visual search trials. In the first block, ob-
servers always searched without explicit instructions to
adopt any particular search strategy. In the second block,
observers were given instructions to adopt a passive
strategy, an active strategy, or continued to search with
no strategy instructions at all. The presence of the target
during search (absent, present) and the number of items

in the visual display (16, 24, 32) were additional within-
subjects variables, presented in equal proportions. We
used target categories (as opposed to specific pictures)
in the experiment because previous research indicated
that searching for items from a general category tends to
be more difficult than searching for specific pictures
(Cunningham & Wolfe, 2014, Exp. 2; Schmidt &
Zelinsky, 2009; Wolfe, Horowitz, Kenner, Hyle, & Vasan,
2004; Yang & Zelinsky, 2009). Additionally, a memory
set size of 24 categories was selected because it is diffi-
cult, but not prohibitively so. Maintaining an appropriate
level of task difficulty is important because Smilek et al.
(2006b) found that the beneficial effect of adopting a
passive search strategy was only seen when the search
task was relatively difficult.

Stimuli
Our search items were images of real-world objects ob-
tained from the “Massive Memory” database (Brady, Kon-
kle, Alvarez, & Oliva, 2008; Konkle, Brady, Alvarez, &
Oliva, 2010; cvcl.mit.edu/MM/stimuli.html; see also Hout,
Goldinger, & Brady, 2014). These stimuli are full color
photographs of real-world objects with no background.
The images we used came from 240 different discrimin-
able categories. Target categories were repeated across
both experimental search blocks, and were never reused
as distractors. The pool of distractor categories used in
block 1 was different (but equal in amount) to the pool of
distractors used in block 2, and separate distractor cat-
egories were used during practice trials as well. Targets
were the same 24 categories for the practice and experi-
mental trials and for both blocks of the experiment.

Procedure
To begin the experiment, observers were asked to
memorize a set of 24 words, which served as the target
categories for both experimental visual search blocks.
All 24 words were displayed on the screen at the same
time in three columns of 8 words each. Each word ini-
tially appeared in a gray font. Starting at the top of the
left-hand column, each word was darkened to black and
surrounded with a box in order to draw the observers’
attention to it for 3 s. As the word was highlighted, four
exemplar images appeared at the top of the screen (see
Fig. 1). Exemplars were randomly selected from the lar-
ger set of 16 items used throughout the experiment.
This was done in order to familiarize the observers with
examples of what they were required to search for and
to ensure that all of the categories were unambiguous.
Selection of target categories (from the pool of 240 pos-
sibilities) was randomized across participants.
After all of the category words were highlighted, the

observer proceeded to a memory test. This consisted of
individual words being presented one at a time on the
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screen. Half of the words were from the target set, and
the others were drawn from a larger set of words. Ob-
servers were asked to indicate if the word currently dis-
played was a part of their memory set; accuracy
feedback was given after each response. Correct re-
sponses were indicated by a green check mark and in-
correct responses were indicated by a red “X”. After one
iteration of the memory test, the target categories reap-
peared and the procedure was repeated. If at least 80%
accuracy was achieved on two consecutive memory tests,
observers moved on to the search trials. If the observer
did not achieve at least 80% accuracy on both tests, they
were allowed to try both tests one additional time. The
threshold of 80% accuracy was obtained from previous
research using similar hybrid search paradigms (Wolfe,
2012). No participants required more than two attempts
to pass the memory test and overall, mean accuracy for
the memory test in experiment 1 was 95%.
The first block of search trials established a baseline

for search behavior without the influence of a particular
search strategy. Observers read a set of instructions that
detailed how to perform the hybrid search task, but did
not specify a particular search strategy to adopt. During
the search trials, a fixation cross was displayed for 500
ms followed by the search display. Observers looked
through an array of photorealistic real-world objects for
one (and only one) target that represented an item from
one of their memorized target categories. Distractors
were pulled from the larger set of 240 categories and did
not overlap with any of the 24 target categories. The

visual set size of the search display varied within subjects
between 16, 24, and 32 items; no more than one exem-
plar from a distractor category was presented on any
given trial, thereby creating visual displays with pictures
from 16, 24, or 32 different categories. When observers
either identified a target item or determined that there
was no target present in the display, they pressed the
spacebar to end the trial. Participants were not required
to localize the target or specify target presence versus
absence in order to minimize the amount of motor re-
sponse selection noise in the RT data (see Hout & Gold-
inger, 2010, 2012, and 2015 for a similar procedure). A
prompt screen then asked observers to indicate (without
time pressure) the presence of a target by pressing the
letter “f” key, or the absence of all targets by pressing
the letter “j” key. Search RT was measured from onset of
the display to depression of the spacebar; the response
indication screen was not speeded. Feedback was pro-
vided after each trial with correct responses indicated by
a green check mark and incorrect responses indicated by
a red “X” (see Fig. 2). There were 144 trials per block.
The procedure for block 2 was the same as in block 1,

save one important detail. Here, observers in the active
and passive conditions were prompted to utilize a speci-
fied search strategy. Observers in the no-strategy condi-
tion simply completed a second block of uninstructed
search. Directions detailing the search strategy were pre-
sented on the computer screen in front of the partici-
pant. The instructions for both groups were adapted
slightly from Smilek et al. (2006, pp. 548-549). The

Fig. 1 Sample display for the memorization of target categories. Targets were highlighted in black for 3 s each: 4 (out of a possible 16) randomly
selected exemplar images corresponding to the highlighted target category appeared at the top of the screen in order to familiarize the
participant with the category and eliminate any ambiguity
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passive instructions read as follows (italics are used to
emphasize points of comparison between the strategies;
text was presented to participants without italics):

“The best strategy for this task, and the one that we
want you to use from now on in this study, is to be as
receptive as possible and let the target item “pop” into
your mind as you look at the screen. The idea is to let
the display and your intuition determine your
response. Sometimes people find it difficult or strange
to tune into their “gut feelings” but we would like you
to try your best. Try to respond as quickly and
accurately as you can while using this strategy.
Remember, it is very critical for this experiment that
you let the target item just “pop” into your mind.”

The instructions for the active group were as follows:

“The best strategy for this task, and the one that we
want you to use from now on in this study, is to be as
active as possible and to “search” for the target item as
you look at the screen. The idea is to deliberately
direct your attention to determine your response.
Sometimes people find it difficult or strange to “direct
their attention” but we would like you to try your
best. Try to respond as quickly and accurately as you
can while using this strategy. Remember, it is very
critical for this experiment that you actively search for
the target item.”

These instructions appeared after every ten trials in
order to remind the observers to utilize the given strategy.

Results
A total of eight participants (7%) were removed from the
dataset prior to analysis. Five participants were removed
for failing to properly follow instructions (i.e., reported
using a different strategy than what was assigned or sim-
ply pressed keys to advance the screens without search-
ing for the target). Two participants were removed for
having mean visual search accuracy greater than 2.5 SDs
below the group mean, and one was excluded due to
exhibiting mean RT greater than 2.5 SDs above the
group mean. Data from a total of 112 participants were
included in the analysis.
Recall that block 1 of the search task was always unin-

structed in order to establish a baseline for natural
search behavior. Observers adopted a passive or active
strategy, or continued to search uninstructed in block 2.
We therefore analyzed the block 2 data using analysis of
covariance (ANCOVA), with participants’ block 1 mean
performance used as covariates. This was done to ac-
count for pre-existing differences in search performance
between observers.
Many of the significant main effects found in this

study (e.g., trial type, visual set size), as well as many of
the interactions, are typical and well-documented in the
visual search literature. As such, they are not of central
interest here, and in the interest of brevity are not com-
mented upon in any detail. We focused instead on any
main effects of (or interactions with) search strategy;
such effects are the most important and interesting po-
tential findings, as they most clearly demonstrate the ef-
fects of adopting a specific strategy on search behavior.
We therefore report only these findings in the body of

Fig. 2 Timeline showing the progression of events in a visual search trial
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the text; our entire set of findings, however, can be
found in Tables 1, 2, 3 and 4. All significant main effects
of and interactions with the strategy factor are plotted in
Fig. 3. We used 2 × 3 × 3 ANCOVA to analyze all
dependent measures (unless otherwise specified) with
trial type (target-present, target-absent) and visual set
size (16, 24, 32) as within-subjects factors, and strategy
(passive, active, no strategy) as a between-subjects factor.
Greenhouse-Geisser correction was used to adjust the
degrees of freedom when necessary.

Accuracy
Here, we found a main effect of strategy (F (2, 108) =
10.61, p < .001, η̂2<p> = 0.16). Accuracy was lowest in the

passive-search condition, compared to the active and
no-strategy conditions.

Reaction time
Only data for correct trials were included in the analysis
of RT. Again, we found the crucial main effect of strat-
egy (F (2, 108) = 21.12, p < .001, η̂2<p> = 0.28). Observers

in the passive condition exhibited shorter RTs when
compared to both the active and no-strategy conditions
(both ps < .001).
There was a significant interaction between strategy

and trial type (F (2, 108) = 12.03, p < .001, η̂2<p> = 0.18)].

We also found an interaction between strategy and vis-
ual set size (F (2.9, 156.37) = 13.01, p < .001, η̂2<p>

= 0.19). In both interactions, sensible main effects are
shown (i.e., longer target-absent than target-present
RTs, increasing RT at larger set sizes), and these effects

are slightly greater in the no-strategy and active condi-
tions, relative to the passive condition.

Inverse efficiency
Past research (Smilek et al., 2006b; Watson et al.,
2010) showed that passive search was associated with
both shorter RTs and a higher rate of error in com-
parison to active search. In order to conclude that
this was not due to a speed/accuracy tradeoff, an in-
verse efficiency score (notably distinct from Wolfe’s
(1998) definition of “efficiency”) was calculated by
dividing the mean RT for correct trials by the mean
proportion of accurate responses (see Townsend &
Ashby, 1983). This score was calculated for each par-
ticipant (in each condition) in our experiment, and
served to scale RT by accuracy such that inverse effi-
ciency scores during perfectly accurate performance
would be equal to the mean RT. Although inverse ef-
ficiency does not provide an unbiased measure of
overall performance, we chose to include it for several
reasons. First, inverse efficiency offers a straightfor-
ward interpretation scale; the measure can be thought
of as “the average energy consumed by the system,”
(Townsend & Ashby, 1983, p. 204) with lower scores
indicating more efficient performance. Second, report-
ing inverse efficiency allows for a more direct com-
parison between what we have observed and what has
previously been documented in this literature. Add-
itionally, we believe that the inclusion of both inverse
efficiency and balanced integration scores (see below)
provides a transparent picture of our findings and al-
lows us to examine the consistency of our results
using several different metrics.

Table 1 Full results of analysis of covariance (ANCOVA) for experiment 1

Accuracy Reaction time Inverse efficiency Balanced integration**

df F η̂2<p> p df F η̂2<p> p df F η̂2<p> p df F η̂2<p> p

Strategy 2.00 10.61 .16 <.001* 2.00 21.12 .28 <.001* 2.00 14.26 .21 <.001* 2.00 4.95 .08 .009*

Block 1 performance 1.00 133.97 .55 <.001* 1.00 83.55 .44 <.001* 1.00 96.43 .47 <.001* 1.00 108.66 .50 <.001*

Set size 1.98 2.03 .02 .13 1.45 .22 .00 .73 1.47 .15 .00 .79 1.83 332.03 .78 .02*

Set size* strategy 3.96 1.54 .03 .19 2.90 13.01 .19 <.001* 2.94 4.63 .08 .004* 3.67 4.54 .08 .002*

Set size* block 1 Performance 1.98 1.10 .01 .33 1.45 36.23 .25 <.001* 1.47 19.05 .15 <.001* 1.83 5.04 .05 .009*

Trial type 1.00 55.35 .34 <.001* 1.00 4.48 .04 .04* 1.00 .34 .00 .56 1.00 3.30 .03 .07

Trial type* strategy 2.00 1.57 .03 .21 2.00 12.03 .18 <.001* 2.00 3.30 .06 .04* 2.00 4.40 .08 .02*

Trial type* block 1 Performance 1.00 28.45 .21 <.001* 1.00 70.67 .40 <.001* 1.00 .25 .00 .61 1.00 .98 .01 .32

Trial type* set size 1.91 1.78 .02 .17 1.90 3.57 .03 .03* 1.55 1.42 .01 .24 1.96 8.16 .07 <.001*

Trial type* set size* Strategy 3.83 .89 .02 .47 3.80 2.35 .04 .06 3.10 .24 .00 .87 3.91 .31 .01 .87

Trial type * set size *Block 1
performance

1.91 1.97 .02 .14 1.90 19.71 .15 <.001* 1.55 1.02 .01 .35 1.95 .75 .01 .47

*Indicates statistical significance
**Balanced integration score analyzed using analysis of variance

Madrid and Hout Cognitive Research: Principles and Implications            (2019) 4:39 Page 9 of 21



We found a main effect of strategy (F (2, 108) =
14.26, p < .001, η̂2<p> = 0.21), with better inverse effi-

ciency scores in the passive group in comparison to
the active and no-strategy conditions (both ps < .01).
We also found an interaction between strategy and
trial type (F (2, 108) = 3.30, p = .04, η̂2<p> = 0.06). In-

verse efficiency scores were better for target-present
trials in the active and no-strategy conditions, while
inverse efficiency was roughly equal for both target-
present and target-absent trials in the passive condi-
tion. There was a significant interaction between
strategy and visual set size (F (2.94, 158.73) = 4.63,
p = .004, η̂2<p> = 0.08). Inverse efficiency scores tended

to become worse as the number of items in the visual

array increased. However, this trend was slightly re-
duced for the passive condition.

Balanced integration score
Inverse efficiency is not without criticism as a method to
control for speed-accuracy tradeoffs (Bruyer & Brysbaert,
2011; Liesefeld & Janczyk, 2019). Arguments against its
use include the fact that the inverse efficiency measure
is not always a good reflection of the relative weights of
speed and accuracy (Bruyer & Brysbaert, 2011). More
specifically, the relationship between RT and accuracy is
not necessarily linear, because the more accuracy scores
decrease, the faster the RT scores increase. Recently, Lie-
sefeld and Janczyk (2019) put forth an alternative to

Table 2 Full results of analysis of covariance (ANCOVA) for behavioral search performance in experiment 2

Accuracy Reaction time Inverse efficiency Balanced integration**

df F η̂2<p> p df F η̂2<p> p df F η̂2<p> p df F η̂2<p> p

Strategy 1.00 5.79 .21 .02* 1.00 32.58 .60 <.001* 1.00 20.66 .48 <.001* 1.00 11.74 .35 .002*

Block 1 performance 1.00 46.52 .68 <.001* 1.00 26.45 .55 <.001* 1.00 26.58 .55 <.001* 1.00 27.60 .56 <.001*

Set size 1.69 3.11 .12 .06 1.37 .16 .01 .77 1.61 2.71 .11 .09 1.86 154.18 .88 <.001*

Set size* strategy 1.69 4.99 .19 .02* 1.37 8.16 .27 .004* 1.61 3.02 .12 .07 1.86 2.73 .11 .08

Set size* block 1 Performance 1.69 1.78 .07 .19 1.37 9.76 .31 .002* 1.61 2.48 .10 .11 1.86 .29 .01 .74

Trial type 1.00 23.59 .52 <.001* 1.00 .43 .02 .52 1.00 .09 .00 .76 1.00 1.74 .07 .20

Trial type* strategy 1.00 1.07 .05 .31 1.00 4.83 .18 .04* 1.00 .47 .02 .50 1.00 2.07 .09 .16

Trial type* block 1 Performance 1.00 14.34 .39 .001* 1.00 8.93 .29 .01* 1.00 .19 .01 .67 1.00 .16 .01 .69

Trial type* set size 1.99 .11 .01 .89 1.64 .54 .02 .55 1.58 4.07 .16 .03* 1.92 .28 .01 .77

Trial type* set size* Strategy 1.99 3.15 .13 .05 1.64 .30 .01 .70 1.58 .32 .01 .68 1.92 2.18 .09 .13

Trial type* set size* block 1
performance

1.99 .32 .01 .73 1.64 4.50 .17 .02* 1.58 4.92 .18 .02* 1.92 5.34 .20 .009*

*Indicates statistical significance
**Balanced integration score analyzed using analysis of variance

Table 3 Full results of analysis of covariance (ANCOVA) for oculomotor behavior in experiment 2

Fixation duration Saccadic amplitude Target run index

df F η̂2<p> p df F η̂2<p> p df F η̂2<p> p

Strategy 1.00 .80 .04 .38 1.00 15.65 .42 <.001* 1.00 18.07 .45 <.001*

Block 1 performance 1.00 12.78 .37 .002* 1.00 35.07 .61 <.001* 1.00 5.11 .19 .03*

Set size 1.90 .91 .04 .41 1.98 1.76 .07 .18 1.62 .17 .01 .80

Set size* strategy 1.90 2.51 .10 .10 1.98 .80 .04 .455 1.62 6.34 .22 .01*

Set size* block 1 performance 1.90 .91 .04 .41 1.98 .12 .01 .888 1.62 1.07 .05 .34

Trial type 1.00 .59 .03 .45 1.00 .78 .03 .39

Trial type* strategy 1.00 .16 .01 .70 1.00 2.20 .09 .15

Trial type* block 1 performance 1.00 1.50 .06 .233 1.00 1.21 .05 .28

Trial type* set size 1.98 1.15 .05 .33 1.49 .50 .02 .56

Trial type* set size* strategy 1.98 1.77 .07 .18 1.49 1.55 .07 .23

Trial type* set size* block 1 performance 1.98 1.36 .06 .27 1.49 .65 .03 .48

*Indicates statistical significance
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inverse efficiency, called the balanced integration score
(BIS). The BIS calculation combines speed and accuracy,
but in contrast to inverse efficiency, it is designed to give
equal weighting to both. Further, this measure has been
shown to be less sensitive to speed-accuracy tradeoffs

than inverse efficiency and other combined measures of
speed and accuracy (e.g., Vandierendonck, 2017, 2018;
Woltz & Was, 2006).
Balanced integration scores are calculated by standard-

izing both the mean RT scores from correct trials and

Table 4 Full results of analysis of covariance (ANCOVA) for oculomotor behavior in experiment 2 (cont.)

Time to first fixation Target dwell time Distractor dwell time

df F η̂2<p> p df F η̂2<p> p df F η̂2<p> p

Strategy 1.00 26.22 .54 <.001* 1.00 12.63 .36 .002* 1.00 7.41 .25 .01*

Block 1 Performance 1.00 14.31 .39 .001* 1.00 7.73 .26 .01* 1.00 9.21 .30 .006*

Set Size 2.00 1.28 .05 .29 1.39 .48 .02 .55 1.93 1.30 .06 .28

Set size* strategy 2.00 5.91 .21 .01* 1.39 1.29 .06 .279 1.93 1.47 .06 .24

Set size* block 1 performance 2.00 .98 .04 .38 1.39 .61 .03 .491 1.93 .90 .04 .41

Trial type 1.00 .07 .00 .80

Trial type* strategy 1.00 4.88 .18 .04*

Trial type* block 1 performance 1.00 1.06 .05 .32

Trial type* set size 1.87 .21 .01 .80

Trial type* set size* strategy 1.87 1.62 .07 .21

Trial type* set size* block 1 performance 1.87 .07 .00 .93

*Indicates statistical significance

Fig. 3 Significant main effects and interactions with strategy, from experiment 1. The top row presents all main effects, and the bottom row
presents all two-way interactions. Error bars represent one standard error of the mean (SEM)
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the mean accuracy, and then subtracting standardized
RT from standardized accuracy. The means and sample
SDs for both RT and accuracy are calculated for each
cell, rather than for each condition, to prevent all condi-
tions from having a mean of zero. Balanced integration
scores can be interpreted as a measure of how much
above or below average the performance was in a given
condition or for a given participant when compared to
the average of the entire group. For example, positive
scores indicate that performance in a given condition
were above average overall, with larger scores indicating
larger divergence from mean performance (Liesefeld &
Janczyk, 2019). After balanced integration scores are cal-
culated they can be subjected to standard statistical tests
such as the t test and ANOVA. Here, we ran 2 × 3 × 3
repeated measures ANOVA with trial type (target-
present, target-absent) and visual set size (16, 24, 32) as
within-subjects factors, and strategy (passive, active, no
strategy) as a between-subjects factor. Greenhouse-
Geisser correction was again used to adjust the degrees
of freedom when necessary.
Results showed a main effect of strategy (F (2, 108) =

4.95, p = .009, η̂2<p> = 0.08), with above average perform-

ance in the passive-search condition. Additionally, we
found a significant interaction between strategy and trial
type (F (2, 108) = 4.39, p = .02, η̂2<p> = 0.08). Here, per-

formance was best for the target-absent trials in the
passive-search condition. There was also an interaction
between strategy and visual set size (F (3.67, 108) = 4.54,
p = .002, η̂2<p> = 0.08). Sensibly, performance was best in

all three conditions for the lowest visual set size of 16
and declined as the set size grew larger. This trend was
diminished for the passive condition, with a smaller re-
duction in BIS as the set size increased.

Discussion
The primary goal of experiment 1 was to determine if
observers in a hybrid search task tend to naturally adopt
a more passive or a more active search strategy. We pre-
dicted that if a passive strategy was naturally adopted
(i.e., without instruction), then asking observers to use
an active strategy would disrupt their performance. Spe-
cifically, it would slow performance down, encourage
more errors, result in relatively worse inverse efficiency,
and lead to below average performance. Additionally, if
uninstructed hybrid search is naturally passive, then
instructing participants to adopt a passive strategy
should not impact their behavior. We speculated that
this pattern of results would lend support to the idea
that the demands of hybrid search on an individual’s ex-
ecutive control is such that it causes people to search in
a more passive manner. Recall that research by Smilek et
al. (2006b) suggests that when engaging in visual search,

a demanding concurrent memory task leads to passive
search and increased parallel processing.
Conversely, we predicted that if observers in hybrid

search tasks naturally adopt an active strategy, then ask-
ing them to use a passive strategy would lead to search
that is faster and less accurate but that is also character-
ized by above average performance and better inverse ef-
ficiency. If this alternative prediction was correct, we
reasoned, active search should not differ significantly
from the uninstructed search condition. Our results sup-
port this alternative hypothesis, indicating a tendency on
the part of our participants to naturally utilize an active
style during hybrid search. This was evidenced by the
high degree of similarity between the active-search con-
dition and the uninstructed search condition in accur-
acy, RT, and inverse efficiency. However, in comparing
performance in the no-strategy condition and the active
condition in terms of balanced integration scores, per-
formance in the no-strategy condition was the poorest,
while the active condition was closer to the overall
group average. Importantly, we found that adopting a
passive search strategy led to faster, less accurate search.
But we also found performance in the passive-search
condition to be above average overall, producing better
inverse efficiency and balanced integration scores; evi-
dence that a speed-accuracy tradeoff was not the root
cause of the observed trend.
Although experiment 1 did not support our initial idea

that hybrid search is naturally passive, our results do
provide some evidence that hybrid search does, in fact,
place relatively high demand on whichever memory sys-
tem is responsible for holding the search targets. This
idea comes from findings that suggest utilizing a passive
strategy only leads to better inverse efficiency when the
task is demanding on both memory and visual spatial at-
tention (Smilek et al., 2006b). While it has been specu-
lated by some that hybrid search is largely reliant on
familiarity and recognition memory (Guild, Cripps, An-
derson, & Al-Aidroos, 2013), the current experiment
provides some evidence that the memory component of
hybrid visual memory search is relatively taxing. Further
evidence of at least some form of recollection memory
usage comes from the fact that our observers were given
categories (rather than specific pictures) as targets. This
argues against the notion that hybrid search is a purely
recognition-based task (see also Wolfe et al., 2015).
At this time, our results do not provide evidence that

hybrid search involves a “massively” parallel identifica-
tion and categorization stage of processing. Wolfe et al.
(2015) theorized that after a serial, guided selection
phase, multiple items pass through an identification
“pipeline” and are processed in parallel. Had observers
naturally adopted a more passive search strategy, it
would have suggested a tendency toward parallel
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processing. However, it may be the case that the degree
of parallel processing in hybrid search exists along a
continuum. Perhaps adopting a passive strategy simply
increases the degree of parallel processing in this task.
Further, parallel processing need not be constrained to
the identification phase of hybrid search. Although
Wolfe et al. (2015) speculated that visual selection is
both serial and guided, passive search could also influ-
ence the selection phase as well, allowing a greater num-
ber of items to be selected for processing via a
broadening of the attentional window (see Olivers &
Nieuwenhuis, 2005; Treisman, 2006).
The pattern of results observed in experiment 1 also

replicates the finding that passive search is associated
with performance that is faster, less accurate, but charac-
terized by better inverse efficiency (Smilek et al., 2006b;
Watson et al., 2010) and better-than-average perform-
ance (as indicated by balanced integration scores). These
findings speak to the reliability of such strategy instruc-
tions. Indeed, the considerable shift in search perform-
ance in the passive condition suggests a fundamental
change in cognitive processing, though the specific pro-
cesses affected remain unclear. The limited amount of
information provided through measures like RT and ac-
curacy does not allow us to dissect what is driving ob-
servers’ behavior when using specified search strategies.
In experiment 2, we replicated experiment 1, and uti-
lized eye tracking in order to provide richer, converging
evidence of processing differences between active and
passive hybrid search. Eye-movement data are particu-
larly useful as they allow us to consider evidence other
than simply overall speed and accuracy. Because passive
search seems to consistently result in shorter RTs and
lower accuracy than active or uninstructed search, this
raises concerns about speed-accuracy tradeoffs. Al-
though analyses of inverse efficiency and balanced inte-
gration scores suggest that a speed-accuracy tradeoff is
not driving the behavioral effects of passive search, eye
movements may provide additional insight into the po-
tential usefulness of adopting a cognitive search strategy.

Experiment 2
In order to better understand how strategy adoption af-
fects hybrid search performance, it is necessary to de-
construct measures of performance like accuracy and
RT using eye tracking. As previously mentioned, inverse
efficiency is an imperfect measurement when there is
the possibility of a speed-accuracy tradeoff. We therefore
emphasize the importance of eye-movement evidence in
experiment 2 to elucidate the effects of cognitive strat-
egies on search performance. We are aware of only one
experiment that has looked at the nature of eye move-
ments in hybrid search. Drew and Wolfe (2013) found

that distractor dwell time increased in a log-linear man-
ner with memory set size. Additionally, they found that
the proportion of items that were fixated upon increased
with the number of items in memory.
Watson et al. (2010) identified a relatively clear pattern

of eye movements associated with passive and active
search. Passive search was characterized by fewer fixa-
tions overall, and a tendency to recognize the target
more quickly once it had been fixated upon. In contrast,
active search was associated with a greater number of
rapid saccades to new spatial locations. Watson and col-
leagues interpreted this to mean that passive search
leads to more effective processing of the information
available during fixations. It is difficult to predict how
these results will transfer from single target search to hy-
brid search - a much more complex task than that
employed by Watson et al. (2010). However, we ex-
pected to see a similar trend towards facilitated informa-
tion processing in the passive-search condition of our
study. This would be characterized by fewer processing
attempts (i.e., fixations) in order to determine the iden-
tity of a target and/or distractor.
Each of the oculomotor measures included in our ana-

lysis are defined here: Fixation duration (in milliseconds)
was simply the average amount of time the eye remained
still (i.e., was not in the process of a saccade); average
saccadic amplitude (in degrees of visual angle) was the
average length of saccades during search; target run
index was the number of items fixated upon prior to fix-
ating upon the target; time to first fixation was the aver-
age amount of time until the first fixation was made on
the target; and target/distractor dwell time was the total
amount of time spent fixating on a target or distractor
(regardless of the number of refixations).
Together, these measures provide a thorough picture

of how attention is deployed during hybrid search. Fix-
ation duration and saccadic amplitude characterize basic
oculomotor behavior, contrasting how long the eyes re-
main still with how small or how sweeping the move-
ments in between fixations tend to be. Target run index
provides insight into attentional selection, quantifying
how effectively attention is guided to the target item.
Similarly, time to first fixation can be thought of as an
indication of how well attention is guided during search.
Finally, dwell times for both distractors and targets ex-
press how quickly observers are able to verify the iden-
tity of a given item.
In experiment 2 we sought to determine if there were

meaningful differences in oculomotor behavior between
passive and active strategies in hybrid search. We were
most interested in determining if eye movements could
tell us anything about how attention is deployed when
using each strategy, and how this may relate to both tar-
get selection and target identification.
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Method
Design and stimuli
The design and stimuli of experiment 2 were identical to
experiment 1, except for the exclusion of the no-strategy
group. After memorizing the target categories, partici-
pants completed one block of uninstructed hybrid search
followed by one block of search using either a passive
strategy or an active strategy.

Participants
Twenty-six students from New Mexico State University
completed experiment 2. Students participated for partial
fulfillment of a course requirement or on a volunteer basis.
All participants were required to have normal or corrected-
to-normal vision, report normal color vision, and be fluent
readers of English. Individuals who participated in experi-
ment 1 were not eligible for experiment 2.

Power analysis
In experiment 2, acquiring a sample size as large as that
of experiment 1 would have been prohibitively time-
consuming (unlike experiment 1, wherein our partici-
pants were run through the experiment on “banks” of
identical computers, experiment 2 required single
participant-sessions on the eye tracker). Thus, in keeping
with the majority of eye tracking studies, we anticipated
collecting data from a smaller sample. We used the data
from experiment 1 to estimate how many participants
we would need, and conducted a power analysis in much
the same way as we did using estimates from the Smilek
et al. (2006b) study. The luxury afforded to us here was
that the necessary effect size was readily available to us.
We reasoned that the inverse efficiency analysis was the
most important finding in experiment 1 because this
combined speed and accuracy, and has a documented
history of use. As such, we used the effect size of our
strategy factor on search efficiency (ηp

2 = 0.209; f =
0.514) to conduct an a priori power analysis for experi-
ment 2. We used the same parameter values as we did
for the power analysis in experiment 1, save a reduction
in the number of groups from three to two (as we no
longer had a no-strategy condition). This analysis re-
vealed a required total sample size of 52 participants.
We were unable to acquire such a large sample of par-

ticipants on the eye tracker, so we conducted a follow-
up, post-hoc, power analysis, to determine what level of
power we achieved. Here, we used the acquired effect
size of strategy on inverse efficiency from experiment 2
(ηp

2 = 0.170; f = 0.452), and discovered that we had an
achieved power level of 0.60. It may therefore be argued
that experiment 2 was, to some degree, underpowered.
Nevertheless, even with the smaller sample size required
by an eye-tracking study, we still replicated the main ef-
fects found in experiment 1.

Apparatus
Eye movements were recorded using an Eyelink 1000 eye-
tracker (SR Research Ltd., Mississauga, ON, Canada),
mounted on the desktop of a 17″ cathode ray tube (CRT)
monitor with a refresh rate of 60Hz. Resolution of the
desktop was 1920 × 1200 pixels, and spatial accuracy of the
eye tracker was 0.01° of visual angle. Eye movement was de-
fined as a saccade when its distance exceeded 0.5° and its
velocity reached 35°/s or acceleration reached 9500°/s2.
Only the right eye was recorded, but viewing was binocular.

Procedure
The procedure was identical to that of experiment 1,
with the exception of details pertaining to eye tracking.
Participants used a chin rest during all trials and were
initially calibrated to ensure accurate tracking. The chin
rest was adjusted so each participant’s gaze landed cen-
trally on the computer screen when the participant
looked straight ahead. The calibration procedure estab-
lished a map of the participant’s known gaze position
relative to the tracker’s coordinate estimate of that pos-
ition. The routine proceeded by having participants fix-
ate on a black circle as it moved to nine different
positions on the screen. The order of the positions was
randomized. Calibration was accepted if the mean error
was less than 0.5° of visual angle, with no error exceed-
ing 1.0° of visual angle. Periodic recalibrations ensured
accurate recording of gaze position throughout the ex-
periment. Interest areas were defined as the smallest
rectangular area that encompassed any given image. The
trial procedure was modified to include a gaze-
contingent fixation cross. When the fixation cross ap-
peared, participants had to maintain fixation on it for
500 ms, which triggered the search display to appear. In
rare circumstances wherein this did not occur within 10
s (because of human error or calibration problems), the
trial was discarded and recalibration was performed be-
fore the next trial.

Results
One participant (4%) was excluded from the analysis due
to self-reported color blindness. Data from a total of 25
participants were included in the analysis. We used 2 ×
3 × 2 ANCOVA to analyze all dependent measures (un-
less otherwise specified) with trial type (target-present,
target-absent), and visual set size (16, 24, 32) as within-
subjects factors, and strategy (passive, active) as a
between-subjects factor. As in experiment 1, block 2
data were analyzed using mean performance in block 1
(uninstructed search) as covariates to account for pre-
existing differences in search performance between ob-
servers. Greenhouse-Geisser correction was used to ad-
just degrees of freedom when necessary. Only data from
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correct trials were used in the analysis of RT and eye-
movement metrics.
As in experiment 1, we report only main effects of or

interactions with strategy. See Fig. 4 for plots of signifi-
cant behavioral measures and Fig. 5 for plots of signifi-
cant eye-tracking measures. The full behavioral results
are documented in Table 2 and the full eye-movement
results are documented in Tables 3 and 4.

Behavioral search performance

Accuracy We found a main effect of strategy on search
accuracy (F (1, 22) = 5.79, p = .03, η̂2<p> = 0.21), with

lower accuracy in the passive-search condition. There
was a significant interaction between strategy and visual
set size (F (1.7, 37.24) = 4.99, p = .02, η̂2<p> = 0.19). While

accuracy was nearly equivalent for both strategies for the
visual set size of 16, accuracy declined more rapidly for
the passive condition as the number of items in the array
increased.

Reaction time There was a main effect of strategy (F (1,
22) = 32.58, p = < .001, η̂2<p> = 0.60), with shorter RTs in

the passive condition. We found an interaction between
strategy and trial type (F (1, 22) = 4.83, p = .04, η̂2<p> =

0.18), and a significant interaction between strategy and

visual set size (F (1.37, 30.18) = 8.16, p = .004, η̂2<p> =

0.27), in keeping with experiment 1.

Inverse efficiency There was a main effect of strategy on
inverse efficiency (F (1, 22) = 20.66, p = < .001, η̂2<p> =0 .48),

with more efficient search performance in the passive-
search condition than in the active-search condition.

Balanced integration score Recall that the BIS can be
interpreted as a measure of how much above or below
average performance was in a given condition when com-
pared to the average of the entire group. This means that
positive values indicate performance above that of the
overall group and negative values indicate performance
below the group average. We used 2 × 3 × 2 ANOVA to
analyze all dependent measures with trial type (target-
present, target-absent) and visual set size (16, 24, 32) as
within-subjects factors, and strategy (passive, active) as a
between-subjects factor. We found a main effect of strat-
egy (F (1, 22) = 11.74, p = .002, η̂2<p> = 0.35) with above

average performance in the passive condition and below
average performance in the active condition.

Oculomotor behavior

Fixation duration There was no significant main effect
of strategy (F (1, 22) = 0.80, p = .38, η̂2<p> = 0.04) on aver-

Fig. 4 Significant main effects and interactions with strategy, from experiment 2, behavioral measures. The top row presents all main effects, and
the bottom row presents all two-way interactions. Error bars represent one standard error of the mean (SEM)
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age fixation duration. There were no significant interac-
tions with strategy.

Saccadic amplitude We found a main effect of strategy
on average saccadic amplitude (F (1, 22) = 15.65, p = .001,
η̂2<p> = 0.42). The average saccadic amplitude was larger

in the passive-search condition. There were no other in-
teractions with strategy.

Target run index Trial type was not included as a fac-
tor here (or in the time-to-first-fixation or target-dwell-
time metrics), as this measure necessitates that we only
assess trials with a target present. We found a main ef-
fect of strategy on the number of items fixated upon
prior to fixating on the target (F (1, 22) = 18.07, p < .001,
η̂2<p> = 0.45). Compared to when an active strategy was

used, observers in the passive condition fixated on an
average of three fewer items before fixating on the tar-
get. There was also a significant interaction between
strategy and visual set size (F (1.63, 35.76) = 9.54,
p = .007, η̂2<p> = 0.22). While target run index was simi-

lar for both the passive and active conditions when the
visual set size was 16, there was a marked increase in
target run index in the active condition for the visual set
sizes of 24 and 32. Target run index also increased for
the visual set sizes of 24 and 32 in the passive condition,
but the increase was more modest.

Time to first fixation There was a main effect of strategy
on time to first fixation (F (1, 22) = 26.22, p= < .001, η̂2<p> =

0.54), with observers in the passive strategy condition taking
less time on average to make their first fixation on the target.
We also found a significant interaction between strategy and
visual set size (F (1.54, 33.96) = 5.91, p= .01, η̂2<p> = 0.21).

While the average time to first fixation increased with the
number of items in the visual array for both conditions, time
increased more conspicuously for the set sizes of 24 and 32
in the active condition. The time to first fixation increased in
a more moderate fashion in the passive-search condition.

Target dwell time Only target-present trials were in-
cluded in this analysis. We found a main effect of strat-
egy on target dwell time (F (1, 22) = 12.63, p = .002, η̂2<p>

= 0.37), with shorter dwell times on targets in the pas-
sive condition. There were no significant interactions
with strategy for target dwell time.

Distractor dwell time There was a significant main ef-
fect of strategy on average distractor dwell time (F (1,
22) = 7.42, p = .01, η̂2<p> = 0.25). Dwell times were

shorter in the passive condition compared to the active
condition. We also found an interaction between strat-
egy and trial type (F (1, 22) = 4.88, p = .04, η̂2<p> = 0.18),

with a larger increase in dwell time on target-absent tri-
als for active searchers, relative to passive searchers.

Analysis of target misses

Viewing failures versus recognition failures Here, we
considered that there are two possible reasons why an

Fig. 5 Significant main effects and interactions with strategy, from experiment 2, eye-trackings measures. The top row presents all main effects, and
the bottom row presents all two-way interactions. The dotted line in the plot of target run index indicates the number of items that would be
expected to be fixated upon due to chance alone, if no attentional guidance was present. Error bars represent one standard error of the mean (SEM)
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observer might miss a target. First, they may miss it be-
cause they simply failed to direct their attention to it; we
refer to this as a viewing failure. Alternatively, they may
miss a target because they look at it and yet fail to per-
ceive that it is what they are searching for; we refer to
this as a recognition failure (see Hout, Walenchok, Gold-
inger, & Wolfe, 2015). In order to determine if the pas-
sive and active conditions differed from each other in
regards to the rate and type of misses that occurred, we
analyzed target misses in block 2 using the nonparamet-
ric chi-square test of independence. Frequency of errors
was used to compute the chi-square test but this was
converted to proportions for ease of interpretation (see
below).
In the passive condition, viewing failures and recog-

nition failures occurred at almost precisely equal rates
(51% viewing failures, 49% recognition failures). How-
ever, this distribution was much less even in the ac-
tive condition, with 23% viewing failures and 77%
recognition failures. Therefore, observers in the
active-search condition were significantly more likely
to commit recognition failures (relative to viewing
failures) compared to those in the passive condition
(χ2 (1, N = 25) = 47.04, p < .001).

Recognition failure dwell time Although we found that
recognition failures were more likely to occur during ac-
tive search, it is possible that when such recognition fail-
ures occurred, they were due simply to reduced dwell
times on the target. That is, perhaps active searchers com-
mit more recognition failures because when they do look
at the target, they fail to look at it for long enough to
recognize it. To test this possibility, we compared the

recognition failure dwell times in the passive and active
conditions. Here we found a marginally significant differ-
ence (F (1, 22) = 3.61, p = .07, η̂2<p> = 0.14), suggesting that

(contrary to our prior suggestion) when recognition fail-
ures occurred, observers in the active condition spent lon-
ger looking at the targets than observers in the passive
condition (see Fig. 6).

Discussion
The purpose of experiment 2 was to examine how eye
movements could inform our understanding of atten-
tional deployment and information processing in passive
and active hybrid search beyond behavioral measures
like RT, accuracy, inverse efficiency, and the BIS. In ex-
periment 1, we showed that while hybrid search may be
naturally active, utilizing a passive strategy leads to no-
ticeable changes in search behavior. In experiment 2, we
built on this information by assessing how these behav-
ioral changes are related to the processing of items
within a visual array. We hypothesized that passive
search would be characterized by eye movements indica-
tive of parallel processing and facilitated decision-
making. Our data supported this prediction.
Importantly, we were able to replicate the main effects

of strategy on accuracy, RT, inverse efficiency and BIS
from experiment 1 despite a reduction in sample size. We
found that searchers in the passive condition were less ac-
curate, but faster, and more efficient than active searchers.
Additionally, performance in the passive-search condition
was above average as indexed by the analysis of the BIS.
These results lend further support to the idea that hybrid
search may be naturally more active in nature, but also
that adopting a passive strategy decreases RTs with only a

Fig. 6 Examination of target misses from experiment 2, derived via eye tracking. The left panel shows the distribution of viewing to recognition
failures (across strategy groups). Note that the figure shows proportion of error types, not overall error rates (which varied across groups and
were higher for passive searchers). The right panel shows target dwell times when recognition failures occurred. Error bars represent one
standard error of the mean (SEM)
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minimal loss in accuracy. We did not replicate the inverse
efficiency and BIS interactions between strategy and visual
set size or between strategy and trial type that we observed
in experiment 1. We expect that this was the result of re-
duced statistical power, and acknowledge the need for fur-
ther replications with a larger sample size. More
interestingly, the majority of our eye-movement measures
indicated a clear difference between the passive-search
condition and the active-search condition.
Target run index analyses, used here as a measure of

attentional selection, suggested that observers in the pas-
sive condition experienced improved attentional guid-
ance, as they looked at fewer items before finding the
target, relative to observers in the active condition. It
should also be noted that the number of items fixated
upon prior to finding the target can informatively be
compared to chance performance; that is, if no atten-
tional guidance is present during search, and selection of
items is instead random, we would expect half of the
items in the display to be fixated upon prior to the tar-
get. In the active-search condition (shown in the
bottom-left panel of Fig. 5), it can be seen that active
search leads to performance that is no better than would
be expected by chance alone, questioning the extent to
which active hybrid search is in fact “guided.” By con-
trast, passive searchers clearly performed better than
chance with higher set sizes, suggesting a beneficial im-
pact of passive strategies on attentional guidance.
In regards to decision making, observers in the passive

condition were able to more easily verify the identity of
items in the visual array as evidenced by the shorter
dwell times for both targets and distractors. Watson et
al. (2010) posits that passive searchers are able to repre-
sent the information obtained from each fixation more
“richly” than those using an active strategy (p. 543).
However, the mechanism that may be driving this
process is unclear. Additionally, it seems unlikely that
the more complex stimuli used in hybrid search could
somehow be represented more richly when it has been
shown that passive hybrid search is both faster and less
accurate than natural hybrid search.
Bar (2003) has proposed a cortical mechanism for top-

down facilitation of visual object recognition that may
be more representative of what is occurring in passive
hybrid search. He posits that early visual areas project a
partial representation of an input image to the prefrontal
cortex. This partial image provides a “gist” of the item
and activates expectations about the identity of an input
image. These expectations are then back-projected as
“initial guesses” to the temporal cortex where they are
used in tandem with bottom-up information to identify
the object. Facilitation is achieved by limiting the num-
ber of interpretations that can be made about an item
based on the initial, coarse, visual information. Bar

(2003) states, “this rapid process significantly reduces
the amount of time and computation required for object
recognition” (p. 601). The longer, sweeping, eye move-
ments characteristic of passive hybrid search seem likely
to provide the kind of coarse visual information de-
scribed by Bar (2003) as being involved in this mechan-
ism. Furthermore, the reduced target and distractor
dwell times in passive hybrid search also fit well with
Bar’s description of reduced computational expenditure.

General discussion
This investigation was designed to determine if giving
people specific cognitive strategies would change their
behavior during hybrid search, and if so, to reveal what
these changes could tell us about attention and cognitive
processing. An additional goal was to test if a general-
ized strategy that requires little training or attention to
specific scan patterns would affect hybrid search per-
formance. We began with the hypothesis that the de-
mands placed on executive control by concurrent
memory and visual search caused observers in this task
to naturally adopt a more passive search strategy. The
loosening of executive control in demanding search tasks
has been shown to promote efficient search performance
through increasing parallel processing (Smilek et al.,
2006b). We reasoned that the remarkably good perform-
ance by those in hybrid search tasks (Wolfe, 2012) could
be indicative of a natural tendency towards passive
search and parallel processing.
In experiment 1, we found that hybrid search seems in

fact to be naturally active. Search with no instructions
and search in which observers were instructed to “ac-
tively direct their attention” to determine their response
were extremely similar in accuracy, RT, and inverse effi-
ciency. In terms of BIS, however, no-strategy search and
active search were less similar. More interestingly, we
found that adopting a passive strategy and “letting tar-
gets ‘pop’” into mind led to behavioral deviations from
what is done naturally (i.e., without instructions to
search in one way or another). Passive search in our
study was characterized by faster, less accurate, but ul-
timately above average performance overall.
We largely replicated our findings in experiment 2.

There, we found that adopting a passive strategy led to
faster, less accurate, above average search on the part of
our participants. More importantly, we found a distinct-
ive difference in oculomotor behavior between passive
and active searchers. Passive search was characterized by
larger, sweeping saccades, a smaller number of items fix-
ated upon prior to viewing the target, and shorter times
to first fixation. Additionally, observers in the passive
condition needed less time to identify both distractors
and targets.
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At present, we cannot definitively explain why passive
search causes a change in inverse efficiency and overall
performance. It is feasible that processing in passive hybrid
search is facilitated through a widening of attentional focus,
allowing more items to be selected for further consider-
ation. There has been much research on the influence of
arousal, specifically positive and negative affect on the
breadth of attentional focus (see Isen, 2000 for a review).
Derryberry and Tucker (1994) propose that positive mood
is associated with a broader scope of attention. More gen-
erally, Olivers and Nieuwenhuis (2005) found that when
observers engaged in a distracting secondary activity (i.e.,
listening to music or doing free-association) they were bet-
ter able to identify a pair of targets in a stream of rapidly
presented images; the classic attentional blink paradigm.
Observers in this task typically cannot detect the presence
of a second target if it follows the initial target closely in
time, due to limited attentional capacity (Broadbent &
Broadbent, 1987). These results therefore point to a broad-
ened attentional focus. They propose that the concurrent
activities induced a “distributed state of mind” (p. 265). It
may be the case that adopting a passive search strategy acts
in a similar fashion, increasing reliance on automatic pro-
cesses through a release of executive control.
In addition to a wider focus of attention, it is also conceiv-

able that passive search facilitates the identification of items
in hybrid search. We propose Bar’s (2003) theory as a plaus-
ible mechanism for facilitated object identification. This the-
ory posits that a top-down mechanism triggered by images
with low spatial frequency can aid object recognition by pro-
viding a gist or best guess about the identity of an object,
thus limiting the possibilities to be considered. Spatial fre-
quency can be thought of as the amount of detail present in
an image per degree of visual angle (Bar, 2004). Therefore,
an image with low spatial frequency will have less defined,
blurrier edges and fewer small details, providing “global in-
formation such as orientation and proportions” (Bar, 2003,
p. 601). A study by Bar et al. (2006) provides evidence for
the utility of this mechanism. Utilizing magnetoencephalog-
raphy and functional magnetic resonance imaging, Bar et al.
(2006) found that object recognition for images with low
spatial frequency caused activity in the left orbitofrontal cor-
tex 50 ms earlier than it did in areas of the temporal cortex
linked to object recognition. Bar suggests that the orbito-
frontal cortex may be involved in the rapid formation of gist
for items with coarse visual information. It is possible that
the longer, sweeping, eye movements associated with passive
search in the current study led to an initial crude encoding,
facilitating better recognition when an item was finally fix-
ated upon directly.

Conclusion
One goal of this research was to determine if cognitive
strategies that do not specify a particular scan pattern

can affect hybrid search performance. As domain-
general strategies, passive and active search have the po-
tential for application across a wide range of professional
search scenarios. While it is important to recognize that
passive search seems to be accompanied by a modest de-
crease in accuracy, evidence from eye-tracking metrics
suggests that this strategy does nevertheless have the po-
tential to affect both attentional guidance and object rec-
ognition in a beneficial manner. In addition to being
easy, fast, and affordable to implement, the use of all-
purpose search strategies may generalize to novel situa-
tions more easily than those previously studied. In con-
trast to other methods of improving visual search, such
as through object identification training or by training
searchers to utilize technology (Kramer et al., 2019),
simple passive search strategies may be less cognitively
demanding, allowing for attentional resources to be bet-
ter allocated to the search task itself. Although the
current state of research on passive search does not
allow us to make strong claims about its benefits in real-
world search, we believe general cognitive strategies hold
great potential for application.
Because the two experiments discussed here were the

first of their kind, it will be necessary to conduct more
research to further investigate the attentional mecha-
nisms involved in hybrid search, in particular, the causes
of above average performance and improved inverse effi-
ciency when utilizing a passive-search strategy. With a
better understanding of the mechanisms underlying pas-
sive search, it may be possible to develop a strategy that
is more highly optimized for high-stakes search. Further-
more, attention and caution should be paid to the poten-
tial detriments of passive-search strategies. In real life,
high-stakes search scenarios like Transportation Security
Administration (TSA) baggage screening prioritize ac-
curacy over speed of search. Clearly, search that is faster
but less accurate than natural search may not be a uni-
versally useful tool in these circumstances. Depending
on the specific scenario, the benefit of enhanced search
speed using a passive strategy may be outweighed by the
cost of lower accuracy, depending on the extent to
which the searcher values finding targets quickly and the
extent to which they value perfect (or near-perfect) hit
rates. To be clear, the accuracy detriments in our studies
were quite small (~ 5% decrease relative to active and
uninstructed search), and overall, performance for pas-
sive searchers was still quite high (i.e., always above 75%,
which is quite good, considering the number of distinct
categories that searchers were looking for). Nevertheless,
even a small detriment in search accuracy may outweigh
the benefits of speed and inverse efficiency in the con-
text of professional search, whereby the cost of missing a
single target (i.e., failing to notice a weapon in a trav-
eler’s bag) can be so high. In these cases, a more
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systematic search strategy, in which observers are asked
to use a specific scan pattern (e.g., Auffermann et al.,
2015), may be more appropriate.
In other professional search scenarios, however, it

should be considered that the small decrement in accur-
acy may be an acceptable cost when considering the po-
tential benefits of passive search speed, particularly
when more than one target may be present in the search
environment. For instance, in scenarios wherein multiple
targets are present, the identification of a single target
may trigger follow-up searches that might otherwise not
have occurred. A baggage screener searching luggage
with a concealed water bottle and a knife does not have
to notice both targets during the initial search; identify-
ing one or the other will trigger the bag to be pulled
from the scanner and then manually inspected, likely
resulting in the location of both prohibited items. Simi-
larly, a radiologist who notices one abnormality on a
chest x-ray may then perform subsequent, slower
searches (or consult a colleague for a second view) to
make sure that all abnormalities have been identified in
the patient.
Moreover, in some scenarios such as search and rescue

(SAR) “clue search,” multiple targets may be present, and
the benefit of finding any clue quickly could far outweigh
the cost of missing one. For example, a SAR “ground
pounder” who scours the last known location of a missing
hiker for clues to their whereabouts might, given unre-
stricted time to search, locate a discarded food wrapper,
or a hat that was shed by the missing person. In such
cases, finding one of these clues quickly may allow the
SAR team to make better-informed decisions about the
search area, and identify areas of wilderness where the
hiker is or is not likely to have travelled. Thus, in this sce-
nario, finding one of these clues quickly may be more
beneficial than finding all of them slowly. Put simply, there
may be a benefit, in certain professional search scenarios,
of finding one of multiple possible targets quickly, even if
less than 100% of the targets are identified in an initial
search. Future research will be needed to determine if the
behavioral effects of passive search extend to multiple tar-
get identification, and in general, consideration will need
to be given in weighing the relative pros and cons of such
search strategies, as a “one size fits all approach” is cer-
tainly unlikely to prove fruitful.
Outside of professional search, numerous everyday

tasks also involve some form of hybrid visual memory
search. Looking for many items in the grocery store or
for a large number of friends in a crowd relies on both a
search through memory and the visual environment.
While people tend to be quite competent at these tasks,
there is always room for improvement. Our findings in-
dicate that adopting a passive approach to search may
be beneficial when a balance of speed and accuracy is

needed. It is still somewhat unclear exactly how passive
search leads to more efficient search performance, but
our results point to broadened attentional focus and fa-
cilitated object identification, and future studies will be
directed at better understanding the benefits and perva-
siveness of passive and active strategies across a wide
range of search scenarios.
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