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Statistical learning of anomalous regions in
complex faux X-ray images does not transfer
between detection and discrimination
Li Z. Sha1* , Roger W. Remington1,2,3 and Yuhong V. Jiang1,2

Abstract

The visual environment contains predictable information - “statistical regularities” - that can be used to aid perception
and attentional allocation. Here we investigate the role of statistical learning in facilitating search tasks that resemble
medical-image perception. Using faux X-ray images, we employed two tasks that mimicked two problems in medical-
image perception: detecting a target signal that is poorly segmented from the background; and discriminating a
candidate anomaly from benign signals. In the first, participants searched a heavily camouflaged target embedded in
cloud-like noise. In the second, the noise opacity was reduced, but the target appeared among visually similar
distractors. We tested the hypothesis that learning may be task-specific. To this end, we introduced statistical
regularities by presenting the target disproportionately more frequently in one region of the space. This manipulation
successfully induced incidental learning of the target’s location probability, producing faster search when the target
appeared in the high-probability region. The learned attentional preference persisted through a testing phase in which
the target’s location was random. Supporting the task-specificity hypothesis, when the task changed between training
and testing, the learned priority did not transfer. Eye tracking showed fewer, but longer, fixations in the detection than
in the discrimination task. The observation of task-specificity of statistical learning has implications for theories of spatial
attention and sheds light on the design of effective training tasks.
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Significance
Misses in routine cancer screening can be surprisingly
high, a problem attributed, in part, to perceptual errors
and attentional limits. Here we tested whether a search
task involving medical-image-like stimuli benefited from
statistical learning of the target’s probable locations.
Participants were assigned one of two tasks: detecting a
heavily camouflaged low-contrast target in noise; and
discriminating a high-contrast target from similar
distractors. By placing the target frequently in one region
of the image, we trained participants to prioritize the
high-probability region. We found that location probabil-
ity learning facilitated both tasks, but learning did not
transfer when the task changed. These findings suggest

that statistical learning may facilitate natural search behav-
iors in a task-specific manner.

Background
Human error is a major cause of accidents, contributing
to > 90% of motor vehicle crashes (National Motor
Vehicle Crash Causation Survey, 2008). Human error is
also surprisingly common in medical-image perception.
False negatives in routine breast cancer screening are as
high as 20–30% (Evans, Georgian-Smith, Tambouret, Bird-
well, & Wolfe, 2013; Krupinski, 2015). These errors are at-
tributed, in part, to a limit in visual attention. For
example, conspicuous anomalies may be missed when ra-
diologists’ attention is diverted to other aspects of the
image (Wolfe, 2016). What mechanisms can be used to re-
duce the impact of attentional limitation? Here we exam-
ine whether training can optimize the allocation of
attention so that locations of greater behavioral relevance
are better attended than other locations. We also test the
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degree of cross-task transfer following training. Address-
ing these questions has implications for theories of spatial
attention and may inform attentional training in applied
fields, such as driving and medical-image perception.

Spatial attention training: previous findings
Several studies on reward and statistical learning showed
that training can shape spatial attention. Chelazzi et al.
(2014) trained participants to associate locations with
monetary reward. The training task involved visual
search of geometric shapes presented in eight locations.
The target was a set of triangles pointing upward and
the distractors were triangles pointing downward. Find-
ing the target yielded different amounts of reward when
the target occurred in different locations. Participants
learned to associate reward with location. In a subse-
quent testing phase, participants searched for characters
among symbols that were briefly presented in the same
eight locations as before. Even though the task changed
and reward was no longer provided, participants were
more accurate at finding targets when they occurred in
the previously high-reward locations than other loca-
tions (Chelazzi et al., 2014). The cross-task transfer sug-
gests that learning-induced changes are task-general.
Analogous results are found using statistical learning.

Jiang, Swallow, Rosenbaum, and Herzig (2013) used loca-
tion probability learning to modify spatial attention. Par-
ticipants searched for a target, such as the letter T, among
distractors. Unbeknownst to them, the target more often
appeared in one quadrant than in any of the other quad-
rants. Although most participants could not identify the
high-probability quadrant, they developed a strong spatial
preference for the high-probability quadrant, producing
faster response time (RT) on trials when the target was in
that quadrant than in the other quadrants (see also Druker
& Anderson, 2010; Geng & Behrmann, 2002; Miller,
1988). Like reward-induced changes in attention, location
probability learning has enduring effects. The spatial bias
toward the high-probability locations persists for several
hundred trials after the target’s location becomes
equi-probable. Cross-task transfer was observed in visual
search tasks, such as between a T-among-L search task
and a 2-among-5 search task, between a T-among-L
search task and an inefficient line orientation search task,
and between two versions of the T-among-L search tasks
that differed in difficulty (Jiang, Swallow, Won, Cistera, &
Rosenbaum, 2015). Transfer occurred even when the dis-
play changed conspicuously, such as when participants
were trained with white items and tested with black items
(Jiang, Swallow, et al., 2015) and when they were trained
to find a T-among-L and tested to find an arrow in natural
scenes (Salovich, Remington, & Jiang, 2017).
Other studies, however, challenged the idea that search

history affects attention in a task-general way. Several

studies failed to observe effects of monetary reward on
spatial attention for participants unaware of the
reward-location association, suggesting that effects of re-
ward depend on an explicit strategy (Jiang, Sha, & Rem-
ington, 2015; Won & Leber, 2016). Even when present,
the effects of implicit reward are small. Without a reliable
effect, the reward learning paradigm is ill-suited for testing
whether the learned priority transfers across tasks. Studies
using location probability learning have found consistent
implicit learning. However, cross-task transfer does not
occur in every case. First, location probability learning ac-
quired in a T-among-L search task did not transfer to a
color singleton search task, and vice versa (Jiang, Swallow,
et al., 2015). Second, spatial biases acquired from a
T-among-L search task did not transfer to a non-search
foraging task (Jiang, Swallow, et al., 2015). In this foraging
task, participants saw several Ls and had to choose one of
them to reveal a hidden treasure. Despite successful loca-
tion probability learning in the T-among-L search task,
participants did not show preferences for the previously
high-probability locations in the following treasure-hunt
task (see also Gwinn, Leber, & Krajbich, 2018, for mini-
mum transfer from visual search to choice behavior). The
reverse was also true: after acquiring a bias toward a quad-
rant frequently hiding a treasure, participants did not per-
form the T-among-L task faster when the target appeared
in the more highly rewarded quadrant. Finally, lack of
transfer was observed even when two spatial tasks were
performed concurrently. In Addleman, Tao, Remington,
and Jiang (2018), participants searched for a T-among-H
overlaid on four natural scenes, one per quadrant. They
were asked to identify the T’s orientation and to memorize
all the background scenes. When the T more often
appeared in one quadrant, participants became faster
and more accurate at finding the T in the high-
probability quadrant. However, the spatial bias did not
extend to the scene task. Memory for the scene in the
visual search task’s high-probability quadrant was no
better than that for scenes in the low-probability quad-
rants (Addleman et al., 2018).

Current study
The findings reviewed above suggest that statistical
learning may facilitate visual search, implicating this
mechanism in medical-image perception. In fact, some
researchers suggest that tumor search relies on an initial
stage of global image analysis (Kundel, Nodine, Conant,
& Weinstein, 2007). Within a single glimpse, radiologists
can detect the presence or absence of tumors at
above-chance levels, even though they were at chance in
localizing the tumor (Evans et al., 2013; Evans, Haygood,
Cooper, Culpan, & Wolfe, 2016). In addition, the sort of
location probability learning investigated in the labora-
tory may also occur in medical-image perception. The

Sha et al. Cognitive Research: Principles and Implications            (2018) 3:48 Page 2 of 16



locations of tumors are constrained by anatomy. For ex-
ample, the heart is a prominent structure of a chest X-ray.
When scanning for lung cancer, radiologists tend to de-
ploy attention to regions of the lung rather than the heart
or the rib cage (Drew, Võ, & Wolfe, 2013). In addition,
when pelvic cancer metastasizes to the brain, it has a
higher concentration in the posterior fossa than other
parts of the brain (Delattre, Krol, Thaler, & Posner, 1988).
The presence of statistical regularities in the tumor’s loca-
tions affords an opportunity for location probability learn-
ing. However, nearly all relevant laboratory studies have
used search tasks that differ significantly from applied
tasks, such as tumor search in medical imaging. Unlike la-
boratory search tasks, tumors are difficult to segment
from background tissue. This difference raises questions
about the utility of location probability learning in tasks
that resemble medical imaging perception.
The goal of the present study is to examine location

probability learning using stimuli and tasks that are
more similar to medical-image search than those used in
previous studies. We employed two visual search tasks
inspired by Drew, Cunningham, and Wolfe (2012) to in-
vestigate two components of medical-image search. In
medical imaging, radiologists face at least two types of
search problems: detecting tumors among highly confus-
able noise (“detection”); and differentiating abnormal
from normal tissues once a candidate anomaly is demar-
cated (“discrimination”). The tasks used in this study,

adapted from Drew et al. (2012), are an approximation to
these problems. Specifically, the detection task required
participants to find a low-contrast T heavily camouflaged
in 1/f3 noise, which has similar power spectrum as mam-
mograms (Burgess, Jacobson, & Judy, 2001). The discrim-
ination task increased the T’s signal-to-noise ratio but
presented the T among similar-looking Ls (Fig. 1). We ex-
amined location probability learning by making the target
disproportionately likely to appear in one region. We
asked two questions. First, can one improve search in re-
gions that are more likely to contain a target? Second,
does training in one task transfer to the other?

Experiment 1
Studies on location probability learning have predomin-
antly used well-segmented stimuli, typically letters (Geng
& Behrmann, 2002; Jiang, Swallow, Rosenbaum, & Her-
zig, 2013; Miller, 1988). Experiment 1 aimed to establish
location probability learning with low-contrast stimuli
embedded among noise. We examined whether partici-
pants can acquire location probability learning in the de-
tection and the discrimination tasks. We also tested the
persistence of the learned spatial preference.
Participants were randomly assigned to perform either

the detection or the discrimination task. In 40% of the
trials, the target was absent, requiring participants to
press the spacebar. In the other 60% of the trials, the tar-
get was present and was equally like to be rotated to the

Fig. 1 Top: Sample visual search trials. Top left: The detection task. For illustrative purposes, the noise opacity used in this example (92%) differs
from that used in the actual experiment (mean 93%). Top right: The discrimination task. Bottom: The target’s location probability in the two
phases of the experiment
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left or to the right. In these trials, participants reported
the target’s orientation. The target’s spatial distribution
was manipulated on target-present trials. In the training
phase, on target-present trials, the target appeared in one
quadrant 50% of the time and in each of the other three
quadrants 16.7% of the time. Immediately following seven
training blocks, the testing phase proceeded to probe the
persistence of probability learning. In the testing phase, on
target-present trials, the target appeared in all quadrants
equally often (25% of the time). The task used in the train-
ing phase was maintained in the testing phase. This ex-
periment will be contrasted with Experiment 2, which
used different tasks in the training and testing phases.

Method
Participants
College students were tested in this study. Their ages were
in the range of 18–26 years. All had normal or
corrected-to-normal visual acuity and were naive to the
purpose of the study. The study was approved by the Insti-
tutional Review Board at the University of Minnesota. Each
participant provided written consent before participating.
A predetermined sample size of 16 was used in each

task. This is the same sample size as in previous studies
on probability cuing (e.g. Jiang, Sha, & Remington, 2015).
The effect size of location probability learning in previous
studies was large (e.g. Cohen’s f = 1.11 in Jiang, Sha, &
Remington, 2015). Minimum sample size to reach a power
of 0.95 was 5.
Thirty-two participants completed Experiment 1. The

participants were randomly assigned to perform either the
detection (N = 16, 11 women and five men with a mean
age of 20.9 years) or the discrimination task (N = 16, 14
women and two men with a mean age of 20.6 years).

Equipment
Participants were tested individually in a room with nor-
mal interior lighting. The experiment was coded using
Psychtoolbox (Brainard, 1997; Pelli, 1997), implemented
in MATLAB (2018). Stimuli were projected on a 19”
CRT monitor (spatial resolution 1024 × 768 pixels),
which has a vertical refresh rate of 75 Hz. Viewing dis-
tance was approximately 48 cm. Visual angles reported
here were estimated from this distance.

Stimuli
Search items were placed in randomly selected locations in
an invisible 10 × 10 matrix (33.5° × 33.5°; Fig. 1). The items
were white embedded in noise with the power spectrum of
1/f3. The noise was chosen to resemble the power spectrum
of mammograms (Burgess et al., 2001) and it changed from
trial to trial. In the discrimination task, each quadrant con-
tained three items. The target letter T was rotated 90°, ei-
ther clockwise or counterclockwise, randomly determined

on target-present trials. The distractor Ls in the discrimin-
ation task had a random orientation of 0°, 90°, 180°, or 270°.
Each search item subtended 1.34° × 1.34°.

Procedure and design
Participants were tested in a short thresholding task be-
fore the main experiment. They completed a recognition
test at the end.

The thresholding task The purpose of this task was to
choose an appropriate level of noise opacity in the detec-
tion task, or an appropriate level of target-distractor
similarity in the discrimination task.
Participants tested in the detection task were tasked to

find a heavily camouflaged letter T against 1/f3 noise (no
Ls were presented in the detection task). Participants
tested in the discrimination task searched for the letter T
among letter Ls in noise. In both cases, the T was present
on 60% of the trials and absent on 40% of the trials. To
initiate each trial, participants clicked on a white fixation
square (0.4° × 0.4°) placed in a random location within the
central 1.5°. The mouse click required eye–hand coordin-
ation and ensured that the fixation was centered at the
start of a trial. The search display then appeared and
remained until participants made a response. Participants
pressed the spacebar if they thought the T was absent and
an arrow key to indicate the T’s orientation if they thought
it was present. Correct trials were followed by three
chirps; incorrect trials were followed by a low buzz, with
no feedback about the position of the target. Task instruc-
tions emphasized both accuracy and RT.
The thresholding procedure of the detection task used

four levels of noise opacity (91%, 92%, 93%, or 94%). The
thresholding procedure of the discrimination task used
four levels of target-distractor similarities. Specifically,
the letter Ls had an offset at the intersection in the
range of 23–26 pixels, making them increasingly dissimi-
lar to the target (in comparison, the offset for the target
T was 16 pixels). There were 15 trials of each opacity or
similarity level, presented in a random order. The opa-
city or similarity level that yielded at least 77.8% accur-
acy and response times of approximately 3 s was
selected for the main experiment. The mean noise opa-
city level used in Experiment 1 was 93% in the detection
task. The mean similarity level used in the discrimin-
ation task was a 24-pixel offset.

Main experiment Each participant completed 440 ex-
perimental trials, divided into 11 blocks of 40 trials each.
The trial sequence was the same as in the thresholding
task. The target was absent on 40% of all trials. The first
seven blocks comprised training, during which the target
T, when present, appeared in one (“high-probability”)
quadrant 50% of the time and in each of the other three
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(“low-probability”) quadrants 16.7% of the time. The
high-probability quadrant was counterbalanced across
participants. The last four blocks comprised testing, dur-
ing which the target T, when present, was equally likely
to appear in any quadrant (25% of the time). Participants
were not informed of the T’s location distribution.

Recognition test At the completion of the experiment,
we probed explicit awareness of the target’s location prob-
ability. Participants were first asked whether they thought
the target was equally likely to appear anywhere on the
display or whether it appeared in some locations more
often than others. Regardless of their answer, they were
then informed that the target appeared in some locations
more often and asked to click the region where the target
most often appeared. Data from the recognition task will
be presented following the report of both experiments.

Results
In the detection task, accuracy was 91.2% on target-
present trials and 99.1% on target-absent trials (i.e. the
false alarm rate was 0.9%). In the discrimination task, ac-
curacy was 91.0% on target-present trials and 99.2% on
target-absent trials (false alarm 0.8%). In both tasks, RT
was much longer on target-absent than target-present tri-
als (detection: 5357ms vs 1661ms; discrimination: 4716
ms vs 2596ms). Because target-absent trials were unin-
formative of location probability learning, we examined
data from target-present trials.
On target-present trials, accuracy did not differ between

the high-probability quadrant and the low-probability
quadrants, t(15) = 1.63, p = 0.13 in the detection task, or t
< 1 in the discrimination task. Data analyses were
conducted on RT from correct trials, excluding

outliers (< 250ms, 0% of the trials, or > 10s, 0.17% of the
trials). Figure 2 displays the mean RT.

Training phase
This phase revealed the acquisition of location probabil-
ity learning. RT was faster when the target was in the
high-probability rather than low-probability quadrants.
This was verified in an ANOVA with task (detection or
discrimination) as a between-subject factor, target quad-
rant (high versus low probability quadrants) and training
block (1–7) as within-subject factors. Location probabil-
ity learning was reflected in the significant main effect of
the target’s quadrant, F(1,30) = 9.40, p = 0.005, ηp

2 = 0.24.
In addition, search speed was faster in later blocks than
earlier ones, producing a significant main effect of train-
ing block, F(6,180) = 7.20, p < 0.001, ηp

2 = 0.19. Even
though we used a thresholding procedure to titrate indi-
vidual participants’ search RT, RT was longer in the dis-
crimination task than the detection task, yielding a
significant main effect of task, F(1,30) = 52.78, p < 0.001,
ηp

2 = 0.64. None of the interaction effects were signifi-
cant, Fs < 1. Thus, we successfully induced location
probability learning using X-ray like stimuli.

Testing phase
The testing phase probed the durability of location
probability learning. In this phase, the target was ran-
domly placed and was equi-probable across all quad-
rants. Thus, inter-trial repetition was no more likely in
the high-probability than the low-probability quadrants.
Nonetheless, location probability learning persisted in
the testing phase. An ANOVA using task, target’s quad-
rant, and testing blocks as factors revealed a significant
main effect of the target’s quadrant, showing that partici-
pants were faster finding the target in the previously

Fig. 2 Target-present RT data from Experiment 1. The first seven blocks were the training phase (the target appeared in the high-probability
quadrant disproportionately often). The last four blocks were the testing phase (the target appeared in all quadrants equally often). Error bars
show ±1 S.E. of the mean
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high-probability quadrant than the previously low-prob-
ability quadrants, F(1,30) = 4.90, p = 0.04, ηp

2 = 0.14. RT
did not change across blocks in the testing phase, F(3,
90) = 1.19, p = 0.32 for the main effect of block. RT was
faster in the detection task than in the discrimination
task, F(1,30) = 39.84, p < 0.001, ηp

2 = 0.57 for the main
effect of task. The persisting probability cuing was com-
parable between the detection and discrimination tasks,
F < 1 for the interaction between target quadrant and
task. Probability cuing declined marginally with
prolonged testing, F(3, 90) = 2.44, p = 0.07, ηp

2 = 0.08 for
the interaction between target quadrant and testing
block. This suggests that as reinforcement of the high--
probability quadrant was withdrawn, extinction of the lo-
cation probability learning slowly occurred. Block did not
interact with task, F < 1, neither was the three-way inter-
action significant, F(3, 90) = 1.69, p = 0.17.

Discussion
Experiment 1 showed that participants responded to the
target faster when it occurred in a high-probability re-
gion than when it occurred in a low-probability region,
an effect that persisted in the testing phase. These re-
sults extended previous findings to stimuli that were
heavily camouflaged in noise. To our knowledge, this is
the first time that location probability learning has been
found with stimuli that resemble medical images. Ex-
periment 1 also showed that the magnitude, pace, and
persistence of location probability learning were compar-
able between the detection and discrimination tasks,
though RT in the detection task was faster than that in
the discrimination task.
In both tasks, the RT advantage in the high-probability

quadrant was already significant in Block 1. This could be
due to inter-trial location repetition priming given that
the target was more likely to repeat its quadrant in the
high-probability quadrant than in the low-probability
quadrants. To verify that there were no systematic differ-
ences in RTacross quadrants, we examined RT on the first
trial in which the target was in the high-probability quad-
rant and the first trial in which the target was in any of
the low-probability quadrants. These data represented the
“first” encounter of the conditions. We found comparable
RTs between these two types of trials (2188ms in the
high-probability quadrant, 2220ms in the low-probability
quadrants, t(15) = 0.08, p = 0.94 in the detection task,
3327ms in the high-probability quadrant, 3186ms in the
low-probability quadrants, t(15) = 0.35, p = 0.73 in the dis-
crimination task), suggesting that the conditions were
equivalent before location repetition or probability learn-
ing. Having ruled out systematic quadrant differences, the
early appearance of facilitation in the high-probability
quadrant could be due either to true location probability
learning occurring early or inter-trial priming due to

greater repetition of the approximate location of the tar-
gets for the high-probability quadrant. The sustained
benefit for the high-probability quadrant in the testing
phase, when targets occur equally in all quadrants, is evi-
dence that true probability learning has occurred.
The RT advantage in the high-probability quadrant

could reflect a facilitation of search efficiency; alterna-
tively, participants could be faster in making a decision
after the target had been found. However, previous stud-
ies that manipulated set size have consistently found a
reduction in search slope. Search efficiency, as indexed
by the slope in the linear function relating RT to set size,
is greater in the high-probability than low-probability
quadrants (Jiang, Swallow, & Rosenbaum, 2013; Sisk,
Twedell, Koutstaal, Cooper, & Jiang, 2018). As we will
show in Experiment 2, eye movement data also provide
evidence that the location probability manipulation af-
fects search shortly after the onset of the search display.
The design of our experiment included a region that

was more likely to contain the target than the rest of the
visual field. Conversely, location probability learning
may be induced by including a region less likely to con-
tain the target than the rest of the visual field. Although
we did not use the latter design, others have varied loca-
tion probability in a graded fashion (e.g. Druker & An-
derson, 2010); search priority followed the gradient. In
fact, even when the probability manipulation is binary,
its effect is continuous across space – locations farther
from the high-probability quadrant are less well attended
than nearby locations (Jiang, Sha, & Sisk, 2018). Other
studies have found that locations frequently containing
distractors are better ignored (Wang & Theeuwes,
2018), suggesting that location probability learning can
both increase target priority and reduce distractor
priority.

Experiment 2
The sensitivity of both the detection and discrimination
tasks to location probability learning raises an important
question about the transferrability of learning. If changes
in spatial attention following training readily transfer
across tasks, then the design of training tasks may be
guided by convenience. For example, any stimuli and
tasks might be used for training in medical imaging, as
long as the spatial regularities are maintained. However,
studies reviewed earlier suggest that location probability
learning does not always transfer between tasks, espe-
cially if one of the two tasks does not involve visual
search (e.g. treasure hunt or scene memory). Although
both the detection and discrimination tasks used in this
study involved visual search, differences in how well
search items could be segmented may influence how
people shift attention in these tasks.
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Participants in Experiment 2 were randomly assigned
to acquire location probability learning in either the de-
tection or the discrimination task. Unlike Experiment 1,
the task changed in the testing phase: from detection to
discrimination or vice versa. We examined whether loca-
tion probability learning acquired in one task transferred
to the other.
We included eye tracking for a subset of the partici-

pants. This measure yielded insights into potential differ-
ences in how search was conducted. We examined
whether the two tasks involved serial search (e.g. partici-
pants make multiple fixations before finding the target)
and, if so, whether they differed in the number and dur-
ation of fixations. Eye tracking also provided an add-
itional measure of a search habit: the direction of the
first saccadic eye movement. Previous studies showed
that location probability learning not only facilitated RT,
but also increased the proportion of first saccades to-
ward the high-probability quadrant (Jiang, Won, &
Swallow, 2014; Salovich et al., 2017). Discrepancies
sometimes occurred, however. The first-saccadic prefer-
ence emerged more slowly than the RT advantage
(Salovich et al., 2017). These findings suggest that covert
attention – attentional shifts without eye movements –
rely on similar, but not identical, mechanisms as overt
shifts of attention with eye movements. Differences be-
tween the two raise the possibility that RT and first sac-
cades may show different patterns of learning and
cross-task transfer, a possibility tested in Experiment 2.

Method
Participants
Sixty-four college students completed Experiment 2. All
participants were drawn from the same participant pool.
The first 32 participants were tested without an eye
tracker. Among them, a random half were trained in the
detection task and tested in the discrimination task,
whereas the task assignment was reversed for the other
half. Eye tracking was added for the last 32 participants.
A random half of these participants were trained in the
detection task and tested in the discrimination task and
the other half were assigned the opposite tasks.
Altogether, 32 participants completed the detection
training (26 women and six men, mean age 20.0 years)
and 32 participants completed the discrimination train-
ing (26 women and six men, mean age 20.5 years).

Procedure and design
Similar to Experiment 1, participants first underwent a
thresholding task to determine the noise opacity for the
detection task and the target-distractor similarity for the
discrimination task. Thresholding was done on both
tasks in separate blocks, counterbalanced in order be-
tween participants. The mean noise opacity level used in

Experiment 2 was 93% in the detection task. The mean
similarity level was an offset of 24 pixels.
Next, the detection training group carried out the de-

tection task in seven blocks, then switched to the dis-
crimination task for four blocks. The discrimination
training group carried out the discrimination task in
seven blocks, then switched to the detection task for
four blocks. In both groups, the seven training blocks in-
volved a biased target distribution: the target, when
present, appeared in a high-probability quadrant on 50%
of the trials and in each of the other quadrants 16.7% of
the trials. The last four testing blocks involved an un-
biased target distribution: the target, when present, ap-
peared in each quadrant 25% of the time. This
experiment was comparable in design to that of Experi-
ment 1. The key difference is that the task changed be-
tween training and testing. Recognition test was
conducted at the completion of the visual search task.

Eye tracking
Eye-tracking participants rested their head on a chinrest.
An EyeLink 1000 eye tracker (SR research Ltd., Missis-
sauga, ON, Canada) tracked the left eye at a sampling
rate of 2000 Hz. Eye position was calibrated before the
experiment and verified before each trial. Recalibration
was done as needed. The eye tracker recorded the eye
position and information about saccades and fixations.
We focused on: (1) the number of fixations per trial; (2)
the duration of each fixation; and (3) the direction of the
first saccadic eye movement after trial onset.

Statistical analysis
In addition to repeated measures ANOVA, we performed
a Bayesian analysis on the testing phase data. In the case
of a null effect, the Bayesian analysis tests whether a lack
of an effect is more plausible than the presence of an ef-
fect. This Bayesian analysis was implemented in the
BayesFactor package in R (Rouder & Morey, 2012; Rouder,
Morey, Speckman, & Province, 2012). We used the default
prior (Cauchy prior) in this package, which has been
shown to be appropriate for the vast majority of designs in
experimental psychology (Rouder et al., 2012). We used a
top-down model comparison to assess the evidence for or
against probability cuing in the testing phase. This proced-
ure first constructed a full model including all terms.
Next, it took out each term one at a time and compared
the resulting model with the full model. Each term yields
a Bayes Factor, which describes the degree to which the
model omitting that term is preferred over the full model.
For example, a Bayes Factor of 5 implies that a model
omitting the term is five times more plausible than a
model including it. In other words, it is five times more
likely that term does not have an effect than it does.
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Results
Behavioral data
Behavioral data were obtained from the whole sample. Ac-
curacy was 98.8% on target absent trials (false alarm rate
1.2%). On target-present trials, accuracy was unaffected by
the target’s quadrant. It was 89.1% in the high-probability
quadrant, 88.4% in the low-probability quadrants,
t(15) = 1.06, p = 0.30 for the detection-training partici-
pants; 90.9% in the high-probability quadrant, 89.2% in
the low-probability quadrants, t(15) = 1.78, p = 0.09 for the
discrimination-training participants. RT was longer on
target-absent than target-present trials (5698ms vs 1758
ms for the detection-training participants and 4784 vs.
2471ms for the discrimination-training participants). We
examined mean RT from correct target-present trials, ex-
cluding outliers (< 250ms: 0.01% of the trials; > 10 s:
0.27% of the trials). Figure 3 displays these results.
The training phase was the same as in Experiment 1.

Replicating Experiment 1’s finding, we found significant lo-
cation probability learning. An ANOVA using task, target
quadrant, and training block as factors showed a significant
main effect of target quadrant, as RT was faster when the
target was in the high-probability quadrant, F(1, 62) =
47.90, p < 0.001, ηp

2 = 0.44. RT also became faster in later
blocks, producing a significant main effect of block, F(6,
372) = 11.65, p < 0.001, ηp

2 = 0.16. RT was faster in the de-
tection task than the discrimination task, F(1, 62) = 55.94,
p < 0.001, ηp

2 = 0.47. The lack of interaction between target
quadrant and task suggests that probability cuing was com-
parable between the two tasks, F(1, 62) = 2.10, p = 0.15. Im-
provement in RT across training blocks was larger in the
discrimination task than the detection task, F(6, 372) =
2.17, p = 0.04, ηp

2 = 0.03 for the interaction between block
and task. None of the other interaction effects were signifi-
cant, largest F(6, 372) = 1.79, smallest p = 0.10.

Even though participants acquired probability cuing, this
effect did not transfer in the testing phase when the task
changed. An ANOVA using task, target quadrant, and test-
ing block as factors showed no effects of target quadrant, F
< 1. RT improved across blocks, producing a significant
main effect of testing block, F(3, 186) = 5.66, p = 0.001, ηp

2

= 0.08. RT was faster in the detection task than the discrim-
ination task, F(1, 62) = 38.49, p < 0.001, ηp

2 = 0.38 for the
main effect of task. Target quadrant did not interact with
block, neither did it interact with task, Fs < 1, and the
three-way interaction was not significant, F < 1.
To examine the strength of the null effect in relation

to the presence of a transfer effect, we conducted a
Bayesian analysis on the effect of target quadrant in the
testing phase (see “Method”). The Bayesian analysis pro-
vides strong evidence that location probability learning
did not transfer to the testing phase when the task chan-
ged. The Bayes factor of target quadrant was 8.99, sug-
gesting that it was nine times more likely that target
quadrant did not affect RT than it did.
The above analysis combined data across all 64 par-

ticipants who produced behavioral data. Note that half
of these were tested on an eye tracker and the other
half were not. When “eye-tracking status” was included
as a between-group factor in the analysis, this factor
did not interact with any of the experimental factors. In
the training phase, the interaction between eye-tracking
status and target’s quadrant was not significant, F(1,
62) = 1.16, p > 0.28. Location probability learning was
significant in each group, F(1, 31) = 20.09, p < 0.001,
ηp

2 = 0.39 for those with eye-tracking; F(1, 31) = 27.11,
p < 0.001, ηp

2 = 0.47 for those without eye-tracking. In
the testing phase, there was no interaction between
eye-tracking status and target’s quadrant, F(1, 62) =
1.13, p > 0.29. Transfer of learning was not significant

Fig. 3 Mean RT on target-present trials of Experiment 2. Left: Participants were trained in the detection task and tested in the discrimination task.
Right: Participants were trained in the discrimination task and tested in the detection task. There were seven training blocks and four testing
blocks. Error bars show ±1 S.E. of the mean
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for either the eye-tracked group, F < 1, or those without
eye tracking, F < 1.

Eye movement data: fixation pattern
Training phase Differences in eye movement provided
insight into the lack of transfer between tasks. Both tasks
entailed a large number of fixations (Fig. 4, left). Partici-
pants made more fixations on target-absent trials than
target-present trials. We conducted an ANOVA on the
number of fixations, using task as a between-subject factor
and target status (target-present or target-absent) as a
within-subject factor. This analysis showed a significant
main effect of target status, with more fixations on
target-absent trials, F(1, 30) = 422.87, p < 0.001, ηp

2 = 0.93.
Participants performing the discrimination task made
more fixations than those performing the detection task,
F(1, 30) = 18.06, p < 0.001, ηp

2 = 0.38, a difference that was
larger on target-present trials than target-absent trials,
F(1, 31) = 5.08, p = 0.03, ηp

2 = 0.15 for the interaction be-
tween task and target status.
Although participants in the discrimination training task

made more fixations, on average each fixation was briefer
(Fig. 4, right). An ANOVA using target status as a
within-subject factor and task as a between-subject factor
showed that fixation duration was shorter on target-absent
trials than target-present trials, F(1, 30) = 40.74, p < 0.001,
ηp

2 = 0.58. Fixation duration was longer in the detection task
than in the discrimination task, F(1, 30) = 55.34, p < 0.001,
ηp

2 = 0.65, a difference that was larger on target-absent than
target-present trials, F(1, 30) = 5.40, p= 0.03, ηp

2 = 0.15 for
the interaction between task and target status.

Testing phase The pattern of fixation data was repli-
cated in the testing phase (Fig. 5). Specifically, partici-
pants performing the discrimination task made more

fixations than those performing the detection task, par-
ticularly on target-present trials, t(30) = 6.59, p < 0.001.
Mean fixation duration was briefer in the discrimination
task than the detection task, F(1, 30) = 36.86, p < 0.001,
ηp

2 = 0.55. Other aspects of the statistical analyses were
similar to those of the training phase and the details are
omitted.
The fixation data showed that both detection and dis-

crimination tasks involved a large number of fixations,
supporting the assumption that the tasks required serial
search. Differences between the two tasks were also ap-
parent. Participants made more fixations in the discrim-
ination task than in the detection task. However, each
fixation was briefer in the discrimination task.

Eye movement data: first-saccadic eye movements
Not only were people faster in finding the target in the
high-probability quadrant, but they also acquired a ten-
dency of saccading toward that quadrant first. This effect
was most clearly revealed on target-absent trials, where
saccade could not have been influenced by the presence
of target features (Fig. 6). With four quadrants, the
chance rate of saccading toward the high-probability
quadrant is 25%. In the training phase (Blocks 1–7), the
mean percentage of trials with first saccades to the
high-probability quadrant was 49.8% in the detection
task and 39.6% in the discrimination task, both of which
were significantly higher than 25%, t(15) = 4.97, p < 0.001
for the detection task and t(15) = 2.28, p = 0.04 for the
discrimination task. An ANOVA using task and training
blocks as factors showed that participants’ tendency to
saccade toward the high-probability quadrant increased
across training blocks, F(6, 180) = 9.36, p < 0.001, ηp

2 = 0.24
for the main effect of block. The main effect of task

Fig. 4 Fixation data from the training phase of Experiment 2. Left: Average number of fixations per trial. Right: Mean fixation duration. Error bars
show ±1 S.E. of the mean
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(F(1, 30) = 1.60, p = 0.21) and the interaction between block
and task (F(6, 180) = 1.37, p = 0.23) were not significant.
As the task changed in the testing phase, the saccade

pattern also changed. Those trained in the discrimination
task and tested in the detection task no longer persisted in
their overt search pattern. In these participants, the mean
percentage of trials with first saccades to the previously
high-probability quadrant in the testing phase was 22.6%,
a level not significantly higher than chance, t < 1. Those
trained in the detection task and tested in the discrimin-
ation task, however, showed a persisting but declining

trend of saccading toward the high-probability quadrant.
For these participants, the percentage of first saccades di-
rected toward the high-probability quadrant in the testing
phase – 41.5% – was significantly higher than chance,
t(15) = 2.36, p = 0.03. This effect declined across testing
blocks, F(3, 90) = 4.31, p = 0.007, ηp

2 = 0.13.
Qualitatively similar results were observed on

target-present trials (Fig. 7 in the Appendix). These trials
presented some complications given that the first sac-
cades may be made after detecting target features and
therefore would be influenced by where the target was

Fig. 5 Fixation data from the testing phase of Experiment 2. Left: Average number of fixations per trial. Right: Mean fixation duration. Error bars
show ±1 S.E. of the mean

Fig. 6 Direction of the first saccadic eye movement in Experiment 2. Plotted are the percentage of trials where the first saccadic eye movement
was directed toward the high-probability quadrant on target-absent trials. Higher values indicate a stronger saccadic bias toward the high-probability
quadrant. Error bars show ±1 S.E. of the mean
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on a trial. Nonetheless, the pattern of data was similar to
target-absent trials. Specifically, when trained with the
discrimination task, participants gradually acquired a
tendency to saccade toward the high-probability quad-
rant first. This preference ceased when the task changed
to detection. When trained with the detection task, par-
ticipants also acquired a tendency to saccade toward the
high-probability quadrant first. This preference was sub-
stantially reduced, though somewhat persistent, when
the task changed to discrimination. Detailed results and
statistical analyses that took into account the target’s lo-
cation can be found in the Appendix.
Figure 7 in the Appendix showed different saccade pat-

terns between the detection and discrimination tasks. Re-
gardless of which phase these tasks were performed in,
first saccades in the discrimination task were insensitive to
the target’s actual location. The proportion of first sac-
cades toward the high-probability quadrant was no stron-
ger when the target itself was in the high-probability
quadrant than when it was elsewhere. This suggests that
the first saccades were executed before acquiring target
features. In contrast, in the detection task, the proportion
of first saccades toward the high-probability quadrant was
stronger when the target was in that quadrant than when
it was elsewhere. This suggests that first saccades were ini-
tiated after participants had analyzed the image and had
some information about where the target was. In fact, first
saccade latency was longer in the detection task than in
the discrimination task, both in the training phase
(target-absent trial means: 240ms vs 156ms, t(30) = 4.67,
p < 0.001 on trials) and in the testing phase (226ms vs
148ms, t(30) = 5.50, p < 0.001).

Discussion
Experiment 2 successfully induced a change in spatial at-
tention in the training phase in both the detection and
discrimination tasks. However, no transfer in RT was ob-
served when the task changed. This was the case even
though the two tasks were performed in the same gen-
eral space, the task set was similar, and the displays had
similar visual characteristics including the use of 1/f3

noise. On its own, the lack of transfer may be explained
by differences between the two tasks. For example, the
discrimination task took longer. However, differences in
search RT did not prevent transfer in previous studies.
Jiang, Swallow, et al. (2015) observed transfer between
two T-among-L search tasks of different difficulty. The
easy task had a mean RT around 1 s and the difficult task
3 s. The discrepancy in task difficulty in that case was
greater than in the current study, where RT differed by
about 0.5 s. A difference in display appearance (e.g.
noise opacity level) also could not explain the results.
Salovich et al. (2017) showed transfer between two visually

very different tasks – finding a T-among-L and finding an
arrow in natural scenes.
What might account for the lack of transfer in the

current study? We suggest that the lack of transfer may
reflect differences in how search was conducted between
the two tasks. The discrimination task requires partici-
pants to make serial shifts of attention among items that
are easily segmented from the background. The detec-
tion task has few candidate regions to inspect but re-
quires longer scrutiny when one is identified. This
differs from previous studies where all tasks involve ser-
ial scanning among segmented objects. The eye data
supported this suggestion. The discrimination task in-
volved a higher number of fixations than the detection
task, but each fixation was briefer. In addition, the de-
tection, but not the discrimination, task involved an ini-
tial stage of image analysis before the first saccade was
made. These data suggest that the search procedures dif-
fered between the two tasks.
The target’s location probability not only enhanced

search RT, but also induced a tendency to direct the first
saccade toward the high-probability quadrant. Consist-
ent with RT, the first-saccade bias acquired in the dis-
crimination task did not transfer to the detection task.
However, the saccade preference acquired in the detec-
tion task only gradually declined when the task changed
to discrimination. This latter finding was not accompan-
ied by an RT advantage. This discrepancy suggests that a
habit involving saccades is harder to correct than the
covert search habit indexed by RT. The lack of an RT
advantage suggests that information gathered from the
preferential saccades is discounted at a later level; hence,
there was no RT advantage even though eye movements
showed a residual preference toward the previously
high-probability quadrant.

Awareness
In the recognition test, some participants reported no-
ticing that the target was more likely to occur in some
locations than others and went on to correctly select
the high-probability quadrant. These were the “aware”
participants. Combining data from both experiments,
there were 22 aware participants from detection-train-
ing (out of 48 total) and eight from discrimination
training (out of 48). The lower level of awareness in the
discrimination task may be attributed to the more de-
manding nature of the task owing to the presence of
distractors. The remaining 66 participants were “un-
aware.” To examine the association between explicit
recognition and location probability learning, we per-
formed a mixed ANOVA on the training phase data
from each task, using target quadrant and block as
within-subject factors and awareness as a between-sub-
ject factor. In participants undergoing detection
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training, location probability learning was significant,
F(1, 46) = 44.44, p < 0.001, ηp

2 = 0.49, an effect that did
not interact with awareness status, F < 1. Similarly, in par-
ticipants undergoing discrimination training, location
probability learning was significant, F(1, 46) = 14.13,
p < 0.001, ηp

2 = 0.24, but this did not interact with
awareness status, F < 1.
To ensure that location probability learning occurred in-

dependently of awareness, we performed an ANOVA on
the training phase data for unaware participants only, sep-
arately for the two tasks, using target quadrant and block
as within-subject factors. Unaware participants undergo-
ing detection training showed location probability learning
(main effect of target quadrant), F(1, 25) = 30.68, p < 0.001,
ηp

2 = 0.55. Similarly, unaware participants undergoing
discrimination training showed significant location prob-
ability learning, F(1, 39) = 13.60, p < 0.001, ηp

2 = 0.26.
Consistent with prior work (Geng & Behrmann, 2002;
Jiang et al., 2018), location probability learning did not de-
pend on explicit awareness.
Finally, to examine whether explicit awareness affected

the first-saccade direction, we compared the percentage of
first saccades that landed in the high-probability quad-
rants between the aware and unaware participants. Inde-
pendent t-tests did not show significant differences
between the two groups in either the training phase, t < 1,
or the testing phase, t(30) = 1.13, p > 0.26.

General discussion
In two experiments we investigated the efficacy of inci-
dental probability learning to induce changes of spatial
attention in faux X-ray images, with the goal of deter-
mining if patterns of attentional bias acquired through
learning could be leveraged to facilitate performance in
search tasks that resemble radiological image perception.
The detection task required participants to segment a
target from background noise. We showed that this task
was sensitive to the target’s location probability. Partici-
pants preferentially searched the region where the target
was frequently found. This preference was acquired inci-
dentally. Once acquired, it persisted after the target’s lo-
cation was random and equi-probable. Similar results
were observed in the discrimination task, which used
well-segmented elements and required a more trad-
itional approach of discriminating the target from dis-
tractors based on shape (Wolfe, 1998). Although the
faux X-ray images used here are not real, they are an
intermediate stimulus between typical laboratory stimuli
and radiological images. Our data suggest that location
probability learning can facilitate performance in search
tasks that resemble components of medical-image per-
ception and that learning is task-specific.
Other studies, such as Evans et al. (2013, 2016),

showed that radiologists relied on global image statistics

to detect abnormalities in mammograms and cervical can-
cer images. Within a single glance, radiologists could de-
termine the presence or absence of cancers at
above-chance levels, even though they could not localize
the cancer. In fact, radiologists gave higher abnormal rat-
ings to images of apparently normal breasts that subse-
quently turned cancerous (Brennan et al., 2018). These
findings suggest that rapid extraction of global image sta-
tistics could aid perception. The current study supports
the idea that statistical regularities in medical-image-like
stimuli can facilitate visual search. We identified one spe-
cific source of regularities: the location probability of the
target object. This type of learning may be useful in med-
ical image perception because tumor locations are not
random (Delattre et al., 1988; Drew et al., 2013).
An important finding from the current study is that

learning-induced changes in spatial attention did not
transfer between the discrimination and the detection
tasks. This finding extends previous findings on the
task-specificity of location probability learning. Those pre-
vious studies observed a lack of transfer between search
and non-search tasks, such as between a T-among-L
search task and scene memory (Addleman et al., 2018)
and between visual search and treasure hunt (Jiang, Swal-
low, et al., 2015). However, previous studies did find trans-
fer of probability cuing between visual search tasks,
including tasks that differed in RT and search efficiency or
tasks that used completely different stimuli. The lack of
transfer between two visual search tasks is a unique find-
ing. This result cannot be explained by differences in
search RT or display appearance, as those factors did not
hinder task transfer in previous studies. Our study pro-
vides an important boundary condition for transfer of lo-
cation probability learning: even tasks that both require
serial search may not show transfer.
An important difference between the current study

and previous work is the selection of tasks. Nearly all
previous studies on location probability learning used
well-segmented items. Those tasks, regardless of diffi-
culty or visual appearance, all required discriminating
well-segmented items. In the current study, however, the
detection task had no clearly demarcated items. Partici-
pants made global image analysis before fixating on a
candidate region. In contrast, the discrimination task
showed no evidence of pre-fixation analysis. The first
saccade was equally likely to land in the high-probability
quadrant regardless of whether the target was actually
there. The two tasks also differed in the number of fixa-
tions and their duration, suggesting that search involved
different procedures in these tasks.
The task-specificity of location probability learning has

implications for theories of spatial attention. Existing
studies use the analogy of “maps” to describe attentional
priority. Much like a real map, depictions of the priority
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map illustrate a static image, with hotspots in some
places and cooler regions in others. This entirely spatial,
or “where,” analogy of attentional priority does not read-
ily explain why such a map should be specific to tasks.
An alternative to the concept of priority map is the idea
that spatial attention includes a procedural component,
akin to learning oculomotor search paths. Learning to
attend involves not just learning where targets are likely
to be, but also how to optimize the vector of scan path
to find the target (Jiang, 2017; Jiang, Swallow, Rosen-
baum, & Herzig, 2013). Learning may influence atten-
tion not just by changing the weights assigned in a
Cartesian coordinate space. It may also affect the pre-
ferred direction of attentional shift, the “how” of spatial
orienting. Tasks that differ in search procedure may not
show transfer of learning because they do not share the
procedural component of search.
Location probability learning affects not only search

RT, but also overt allocation of attention as indexed by
eye movements. Participants directed a disproportion-
ately high number of first saccades toward the
high-probability quadrant. This tendency strengthened
with training. When the task changed in the testing
phase, the first-saccade bias did not carry over when par-
ticipants were trained in the discrimination task but
tested in the detection task. On the other hand, the
first-saccade bias acquired in the detection task did carry
over to the discrimination task. This bias gradually dissi-
pated in the testing phase. This asymmetry may be ex-
plained by how the two tasks were performed. Because
first saccades in the detection task were made after an
initial analysis about the image, guidance from target
features could override the saccade habit acquired from
the discrimination task. In contrast, first saccades in the
discrimination task were mainly driven by previous
experience. This allowed the habit acquired from the de-
tection task to more easily influence saccades. Regardless
of the explanation, the latter pattern of data presents an
intriguing contrast to the lack of a corresponding RT
advantage.
Two issues relate to this finding. First, though highly

correlated, eye movement and covert shift of attention
reflect somewhat different mechanisms (Posner, 1980;
Remington, 1980; Wu & Remington, 2003). In location
probability learning, it takes about twice as long for par-
ticipants to acquire the first-saccade bias as the RT ad-
vantage (Salovich et al., 2017). In addition, frequently
moving one’s eyes to a quadrant is neither necessary nor
sufficient for location probability learning. The RT effect
was robust when participants were not allowed to move
their eyes or when the display was presented too briefly
for eye movements (Addleman et al., 2018; Geng &
Behrmann, 2005). Conversely, frequently moving one’s
eyes to a quadrant did not induce location probability

learning if a goal-directed cue (e.g. a central arrow) was
the source of the eye movement (Jiang, Swallow, &
Rosenbaum, 2013). These findings suggest that the
mechanisms supporting the first-saccade bias and covert
probability cuing are partially dissociable.
Second, our study showed that even when the eyes

continued to favor one quadrant, this act by itself did
not convert into an RT gain. Although this finding seems
surprising, it is consistent with theories of attention that
embrace its multifaceted nature. Serences and Kastner
(2014) summarized several mechanisms by which select-
ive attention may influence processing. These include
enhancement of the attended signal, inhibition of un-
attended signals, and selective readout of information
from the attended channel. In other words, attention af-
fects both perceptual and decisional processes. A sac-
cadic bias may enhance sensory processing from the
previously high-probability quadrant, but its impact will
be minimal if the decision, or “readout,” process does
not favor input from that region.
Our study shows that learning of statistical regular-

ities, such as the probable locations of targets, can facili-
tate search. Part of the learning for medical students and
residents may be to acquire the right “prior” of likely
tumor locations in certain types of cancer (Delattre et
al., 1988; Drew et al., 2013). Because this learning is inci-
dental, and its persistence is not under complete con-
scious control, probability learning of this type can
facilitate search among images that share the same prob-
ability distribution. However, such learning may have its
drawbacks as well. It may hinder search when the tumor
appears in low-probability regions. The latter may
contribute to inattentional blindness and misdiagnosis
(e.g. missing a tumor) in low-probability regions. Devel-
oping specialties within radiological training and adopt-
ing computer technologies that preferentially scrutinize
low-probability regions, may help alleviate this problem.
Because changes in spatial attention are task-specific,

our study suggests that statistical learning is more
effective if performed on the same type of images that
people are likely to encounter. This recommendation
differs from most Brain Training technologies, which
tout far transfer from training in specific laboratory tasks
(e.g. useful field of view) to real-world tasks (such as driv-
ing). Ultimately, transfer of learning rests on shared pro-
cesses between the trained task and the testing task. Our
study provides an example in which transfer fails even be-
tween two search tasks performed in the same general
space. It highlights the specificity of human skill acquisi-
tion, an idea that resonates with findings in other domains
such as chess expertise (Bilalić, McLeod, & Gobet, 2009).
Our study is only the first step toward understanding

effects of spatial training on applied tasks such as med-
ical imaging. The search stimuli used in our study differ
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from tumors and other biological tissues; the prevalence
of targets is much higher than the rates of tumor in
medical images; the testing equipment (e.g. CRT moni-
tor) differs from what radiologists use; and participants
had no prior experience in search from images that re-
semble medical images. Future studies are needed to
both increase the realism of the task and to employ
spatial regularities informed by the distribution of
tumors. One approach to increase realism is to use tar-
gets that resemble actual tumors in shape, size, texture,
and contrast. Another approach is to extract the spatial
distribution of tumors from various types of cancer and
implement this distribution in the location probability
manipulation. In addition, future study can employ
tasks requiring both detection and discrimination
(e.g. adding noise to the current discrimination task).
Finally, collecting data on medical students and residents
in training can help understand the type of spatial biases
they do acquire.

Conclusion
Using stimuli embedded in noise, this study demon-
strates that statistical learning can facilitate visual search
of images resembling X-rays. We showed that consist-
ently finding a target in one region biases people toward
searching that region. This effect does not transfer be-
tween a detection task, in which the target signal is
heavily camouflaged, and a discrimination task involving
well-segmented items. Future studies should extend the
realism of these findings by characterizing the type of
statistical regularities present in medical images. In
addition, it will be important to elucidate the pros and
cons of acquiring location probability learning in radi-
ology and related fields.

Appendix
Figure 7 (left) displays the first saccades of participants
who were trained in the discrimination task and tested
in the detection task. We separated trials in which the
target itself was in the high-probability quadrant, from
trials when it was in the other quadrants. In the training
phase using the discrimination task, participants had a
tendency to saccade toward the high-probability quad-
rant. This was the case both when the target itself was
in the high-probability quadrant, t(15) = 2.40, p = 0.03,
and when the target was in a low-probability quadrant,
and t(15) = 2.48, p = 0.03. An ANOVA with block and
target’s location (high-probability and low-probability) as
within-subject factors showed a main effect of block,
suggesting that people were increasingly more likely to
saccade toward the high-probability quadrant in later
blocks, F(6, 90) = 2.16, p = 0.055, ηp

2 = 0.13. This ten-
dency, however, was unaffected by where the target was,
F < 1 for the main effect of target’s location. As soon as
the task changed in the testing phase, the first-saccade
bias ceased. The percentage of first saccades landing in
the previously high-probability quadrant did not differ
from chance, both when the target occurred in the pre-
viously high-probability quadrant, t(15) = 1.25, p = 0.23,
and when the target occurred in the other quadrants,
t(15) = 1.57, p = 0.13. The detection task, however, was
sensitive to where the target itself was. The first saccade
was more likely directed to the high-probability quad-
rant if the target itself appeared in that quadrant rather
than elsewhere, F(1, 15) = 13.92, p = 0.002, ηp

2 = 0.48.
The main effect of block and the interaction between
target’s location and block were not significant, Fs < 1.
Results were largely similar for participants trained in

the detection task and tested in the discrimination task. In
the training phase, the first saccades were biased toward

Fig. 7 Direction of the first saccadic eye movement on target-present trials in Experiment 2. Y-axis plots the proportion of trials in which the first
saccade was directed toward the high-probability quadrant. Trials were separated depending on where the target was. Left: Participants were
trained in the discrimination task and tested in the detection task. Right: Participants were trained in the detection task and tested in the discrim-
ination task. Error bars show ±1 S.E. of the mean
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the high-probability quadrant both when the target itself
appeared in the high-probability quadrant, t(15) = 9.97,
p < 0.001, and when it appeared in a low-probability
quadrant, t(15) = 3.35, p = 0.004. An ANOVA with
block and target’s location as factors showed that this
bias increased across training blocks, F(6, 90) = 6.18,
p < 0.001, ηp

2 = 0.29 for the main effect of block. This
bias was stronger when the target was in the
high-probability quadrant than when it was elsewhere,
F(1, 15) = 40.11, p < 0.001, ηp

2 = 0.73. Thus, first saccades
in the detection task were made after participants had
processed the global image statistics; hence, the saccade
direction was biased toward where the target was. When
the task changed in the testing phase, the first-saccade
bias was retained, both when the target itself appeared in
the high-probability quadrant, t(15) = 2.26, p = 0.04 and
when the target appeared elsewhere, t(15) = 1.97,
p = 0.067. An ANOVA using target’s location and block as
factors showed that this bias marginally diminished in the
testing phase, F(3, 45) = 2.40, p = 0.08, ηp

2 = 0.14 for the
main effect of block.
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