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Abstract

There are large individual differences in people’s face recognition ability. These individual differences provide an
opportunity to recruit the best face-recognisers into jobs that require accurate person identification, through the
implementation of ability-screening tasks. To date, screening has focused exclusively on face recognition ability;

however real-world identifications can involve the use of other person-recognition cues. Here we incorporate body
and biological motion recognition as relevant skills for person identification. We test whether performance on a
standardised face-matching task (the Glasgow Face Matching Test) predicts performance on three other identity-
matching tasks, based on faces, bodies, and biological motion. We examine the results from group versus individual
analyses. We found stark differences between the conclusions one would make from group analyses versus analyses
that retain information about individual differences. Specifically, tests of correlation and analysis of variance suggested
that face recognition ability was related to performance for all person identification tasks. These analyses were strikingly

results of person identification ability.

inconsistent with the individual differences data, which suggested that the screening task was related only to
performance on the face task. This study highlights the importance of individual data in the interpretation of
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Significance statement

Screening tasks are now being implemented in the re-
cruitment of candidates for jobs that involve person
identification. To date, such screening has focussed ex-
clusively on face-recognition ability. However, real-world
identifications often involve the use of cues from the
face, the body, and biological motion. We test whether
screening on face-recognition ability predicts person-iden-
tification performance more broadly. This research has
important implications for the applied field of person
recognition.

Background
Human face-recognition ability varies widely from person
to person. People who perform with exceptionally high
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accuracy on face-recognition tasks are called “super’-
recognisers (see Noyes, Phillips, & O'Toole, 2017 for a re-
view). People with prosopagnosia are at the other end of
the spectrum—these people experience severe difficulty
with face recognition (see Kress & Daum, 2003). The
ability of the rest of the population is dispersed between
these two extremes. Many jobs require accurate identifica-
tions to be made for security and legal purposes.
Screening candidates for these jobs on their person-
identification abilities would, in theory, create a work-
force of people best skilled for the job. To date, screening
has focused exclusively on face recognition. However,
real-world identification scenarios often include other in-
formation that can aid identification such as the body or a
person’s movement.

More broadly, research suggests that the body provides
information that can aid identification. Accurate identifi-
cations are made more frequently from images of faces,
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than images of the body (Burton, Wilson, Cowan, &
Bruce, 1999; O'Toole et al., 2011; Robbins & Coltheart,
2012). Despite this, above-chance accuracy has been
achieved on matching tasks that involve pairs of body
images (O'Toole et al., 2011). Additionally, fusing identi-
fication decisions from the face, with those from the
body, provided more accurate identity decisions than
from the face alone (O'Toole et al., 2011). The role of
the body in identifications is supported further by
Robbins and Coltheart (2015), who reported that par-
ticipants made more accurate identification decisions
from full-person stimuli (video footage or static
image) over face-only and body-only stimuli. It follows
that people rely more on the face than the body to in-
form their identity judgements (Robbins & Coltheart,
2012), even when they identify familiar people (Burton
et al., 1999). However, when it is difficult to extract infor-
mation from the face, the body can be relied upon to in-
form identification, even without conscious awareness
of this reliance (Hahn, O’Toole, & Phillips, 2016;
Rice, Phillips, Natu, An, & O’Toole, 2013).

A person’s movement can also facilitate identification
(O'Toole et al, 2011; Robbins & Coltheart, 2015; Simhi
& Yovel, 2016). O'Toole et al. (2011) reported that par-
ticipants achieved higher matching accuracy when they
viewed video footage of people’s bodies (face obscured),
than when they viewed static body images. Conversely,
Robbins and Coltheart (2015) reported no benefit of
movement for person recognition on images that
showed the face only, the body only, or the full person.
These studies tested for the benefits of movement using
natural videos of faces and bodies. Often, studies that
have examined the role of motion in recognition use
point light biological motion to isolate movement from
an image of a body. These point light videos were origin-
ally created by attaching lights, florescent tape, or
markers to the joints of people who are dressed in dark
clothing, and then filming movements of these people in
a dark room (see Johansson, 1973). They can be created
now with computer software by attaching markers to the
joints and key reference points of models (e.g. head,
arms, legs, shoulders, elbows, knees). Identity information
can be extracted from biological motion, with studies
showing that familiar people can be identified from point
light motion videos (Barclay, Cutting, & Kozlowski, 1978;
Beardsworth & Buckner, 1981; Cutting & Kozlowski, 1977;
Jacobs & Shiffrar, 2004; Loula, Prasad, Harber, & Shiffrar,
2005). There is also evidence of unfamiliar-person
learning and matching from point light motion dis-
plays (Baragchizadeh & O’Toole, 2017; Loula et al., 2005;
Stevenage, Nixon, & Vince, 1999; Troje, 2005).

Here we asked whether a standard screening test of
face recognition ability can be used to predict a per-
son’s ability to make identifications from the face, the
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body, and biological motion. To date, there is only one
study that has tested for an association between
face-recognition ability and body-recognition ability
(Biotti, Gray, & Cook, 2017). In that study, participants
with prosopagnosia and control subjects were tested
on face and body recognition skill on static images
(Biotti et al., 2017). As a group, people with prosopag-
nosia were significantly worse than controls at recog-
nising images of faces and bodies. Scatterplots highlighted
that some, but not all, prosopagnosic participants were
impaired at body recognition. We are interested in the re-
lationship between face recognition, body recognition, and
recognition from biological motion across the spectrum
of face-recognition ability encountered in the general
population.

In generating hypotheses about the relationship be-
tween face-recognition accuracy and accuracy on other
person-identification tasks, we can consider the use of
processing strategies. For example, previous studies
show that people recruit similar holistic processing strat-
egies when they view face images (Collishaw & Hole,
2000; Maurer, Le Grand, & Mondloch, 2002; Murphy,
Gray, & Cook, 2017; Rossion, 2013; Tanaka & Simonyi,
2016; Tanaka & Farah, 1993; Young, Hellawell, & Hay,
1987), body images (Aviezer & Todorov, 2012; Robbins
& Coltheart, 2012; Seitz, 2002), and biological motion
videos (Bertenthal & Pinto, 1994; Chatterjee, Freyd, &
Shiffrar, 1996; Thompson, Clarke, Stewart, & Puce,
2005). Moreover, similar inversion effects have been
found for face, body, and full-person images (Minne-
busch, Suchan, & Daum, 2008; Reed, Stone, Bozova, &
Tanaka, 2017; Robbins & Coltheart, 2012; Yovel, Pelc, &
Lubetzky, 2010). However, other studies have reported
no inversion effects for headless bodies (Minnebusch et
al.,, 2008; Robbins & Coltheart, 2012; Yovel et al., 2010)
and Bauser, Suchan, and Daum (2011) found no evidence
of integration of the top and bottom half of body-only
images. Inversion effects have been reported also for bio-
logical-motion stimuli (Pavlova & Sokolov, 2000; Sumi,
1984; Troje & Westhoff, 2006).

A different hypothesis may be generated from an
examination of the neural processes activated by the
face, body, and movement. Despite the similarities in
processing strategies described above, distinct neural
processes are activated by face and body images
(Kanwisher & Yovel, 2006; Peelen & Downing, 2007).
A complex cortical network of brain regions is in-
volved in face recognition (Calder & Young, 2005;
Haxby, Hoffman, & Gobbini, 2000), which includes
the fusiform face area (FFA) (Gobbini & Haxby, 2007;
Grill-Spector, Knouf, & Kanwisher, 2004; Kanwisher,
Mcdermott, & Chun, 1997; Kanwisher & Yovel, 2006)
and the occipital face area (OFA) (Pitcher, Walsh, &
Duchaine, 2011; Pitcher, Walsh, Yovel, & Duchaine, 2007).
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Body recognition has been linked to activation of the
extra-striate body area (EBA) and the fusiform body area
(FBA) (Downing, 2001; Kanwisher & Yovel, 2006) in the
ventral visual stream. Furthermore, the posterior superior
temporal sulcus (pSTS) in the dorsal visual stream is acti-
vated by viewing motion of the face, motion of the body,
and more generally, biological motion (Allison, Puce, &
McCarthy, 2000; Beauchamp, Lee, Haxby, & Martin, 2003;
Fox, laria, & Barton, 2009; Giese & Poggio, 2003;
Gilaie-Dotan, Kanai, Bahrami, Rees, & Saygin, 2013; Yovel
& O'Toole, 2016). The distributed model of Haxby et al.
(2000) predicts that the invariant information about faces
and bodies is processed by ventral stream areas (FFA,
OFA, FBA, and EBA). The changeable information from
biological motion is processed by the dorsal stream re-
gions in the pSTS. If recognition abilities reflect the neural
processing systems, face and body processing ability may
be linked, while biological motion processing could be
independent of these other abilities.

Turning now to the methodological questions of how
skills are related, there are two main challenges inherent
in any investigation of the relationship among person
recognition skills. First, there is the challenge of incorpor-
ating individual differences into conclusions. For example,
the literature depicts super-recognisers as consistent high
performers across a range of face-recognition tasks
(Bobak, Bennetts, Parris, Jansari, & Bate, 2016; Bobak,
Dowsett, & Bate, 2016; Bobak, Hancock, & Bate, 2016;
Davis, Lander, Evans, & Jansari, 2016; Noyes et al,, 2017;
Robertson, Noyes, Dowsett, Jenkins, & Burton, 2016; Rus-
sell, Duchaine, & Nakayama, 2009). This conclusion most
often reflects group-level results (Noyes et al,, 2017). In
this literature, group-level results most often compare the
average performance of super-recognisers on a task
against the average performance of control participants on
the same task. At a group level, super-recognisers outper-
form control groups on a range of face-recognition tasks.
However, there are often complex patterns of individual
performance across face-recognition tasks (Bobak,
Bennetts, et al., 2016; Bobak, Dowsett, & Bate, 2016; Davis
et al., 2016; Noyes et al.,, 2017; Robertson et al.,, 2016). In
other words, whereas summary statistics examine the
overall pattern of performance, individual performance is
best seen directly from the distribution of subjects’
performance. In a review of the literature on
super-recognisers, Noyes et al. (2017) point to several
instances where group-level claims did not fully represent
the data. Specifically, there are cases where
super-recognisers perform with lower accuracy than
controls, and instances when controls outperform some
super-recognisers. Often, individual differences are ac-
knowledged within experiment results; presented either in
scatterplots, violin plots, or statistically with individual
modified ¢ test analysis (Bobak, Bennetts, et al., 2016;
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Bobak, Dowsett, & Bate, 2016; Davis et al., 2016; Robertson
et al,, 2016). However, they are often presented as an
afterthought or to provide caveats to the group data.
Critically, conclusions tend to be based on the group
result. These group results have been reported in the
media. As we will see in the current study, it is better
policy to begin with individual distributions before
performing any group analysis.

The second challenge in understanding how skills
(e.g., body recognition and face recognition) relate to
one another, is that it is difficult to distinguish “genuine
ability” from the more general factor of motivation/
conscientiousness. At the outset, it is reasonable to
assume that motivation or conscientiousness will have
some predictive value across tasks. Thus, highly con-
scientious people will make a sustained effort across all
tasks and will likely perform better than less motivated
individuals. If high performance in one task is strongly
related to high performance on another task, it is un-
clear whether the relationship is due to skill, motivation,
or to a combination of the two. This problem is particu-
larly vexing when we observe strong correlations between
face recognition performance and performance on other
tasks. We should assume that motivation is part of this
correlation. Thus, when processes are also related inher-
ently (e.g., generated by similar neural mechanisms or
psychological strategies), there will be strong correlation
between performance on all tasks due to the underlying
relationship among processes. It is difficult, perhaps im-
possible, to parcel out what part of the correlation is based
on participant motivation versus skill. The easier case is
when strong dissociation is seen between different tasks.
In that case, it is reasonably easy to assume that motiv-
ation is not the entire cause of the observed correlation in
task performance.

Here our goal was to determine whether a standard
face-matching test (the Glasgow Face Matching Task
(GEMT) short version) is an accurate screening measure
of person matching. The GFMT was chosen as the
screening test, because it is frequently reported in the
literature as a measure of face-matching ability. More-
over, it has standardised norm scores that are available
for the task (Burton, White, & McNeill, 2010). Specific-
ally, we tested whether accuracy on the GFMT relates to
identity-matching performance for face images, body im-
ages, and biological motion. In this study, we progressed
through a carefully selected set of analyses that build
from individual performance-level exploratory analyses
to inferentially based group analysis. We first divided
participants into face-recognition ability groups based
on their performance on the face-matching screening
task (GFMT). In the exploratory analysis, to visualise
performance accuracy across our three identity-matching
tasks (face, body, and biological motion), we created plots
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that show the full distribution of identity-matching
ability for each task, colour coded by performance on
the face-screening task. Multivariate analysis was also
deployed to visualise the pattern of performance of in-
dividual subjects within the array of test types. Next,
to compare performance of specific individuals across
tasks, we created scatterplots and tested for correl-
ation. Finally, we analysed data at a group-level using
an analysis of variance (ANOVA). The visualisation
methods showed that the GFMT screening predicted
performance on the face task, but not on the body or
biological motion task. However, group analysis sup-
ported the misleading conclusion that face recognition
ability is related to performance on each of the other
tasks.

Methods

Participants

Undergraduate students (N = 90, male = 12, mean age = 20
years, age range = 18—-34) from The University of Texas at
Dallas participated in this study in return for research
credits. All participants reported normal or corrected-
to-normal vision at the time of testing. The study was
granted ethical approval from The University of Texas at
Dallas Institutional Review Board.

Materials and procedure

All participants were tested individually on each of the
following tasks. Example images for each task are shown
in Fig. 1.

Glasgow Face Matching Task

The GFMT (short version) (Burton et al, 2010) is a
standardised test of unfamiliar-face-matching ability.
The task consists of the 40 most challenging face image
pairs from the GFMT (full version 168 image pairs)
(Burton et al., 2010). Half of the image pairs are of the
same identity. Images are greyscale, front facing, taken
on the same day, under similar illumination.
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Our participants viewed the image pairs from the
GFMT in a random order and were asked to decide
whether the images in each pair were of the “same”
identity or were images of two “different” people. Re-
sponses were recorded with a keyboard button press.
Participants completed the task at their own pace and
images remained on screen until a response was given.

Expertise in Facial Comparison Test (EFCT)

The EFCT (White et al., 2015) is a face-matching task
consisting of 84 face image pairs (half same identity, half
different identity). All image pairs were selected to be
difficult items for both humans and machines to match,
with different illumination conditions, and variable facial
expressions. As in the GFMT, participants made decisions
on the same or different identity for each EFCT image
pair, with a keyboard button press. Image pairs were pre-
sented in a random order. This was a self-paced task and
images remained on the screen until a response was given.

Body task
The body-matching task was created by the authors of
this paper, using footage from the Human ID database
(O'Toole et al., 2005). The Human ID database contains
multiple front-on walking video sessions for each iden-
tity, shot in the same location on different days. We cap-
tured 100 still-image screenshots from 100 different
video clips and used these screen-shot images in our
body-matching task. Each screenshot was captured when
the walker reached a constant marker line to ensure that
they were a constant distance from the camera. Images
were edited to remove the face (covered by a grey circle),
using Adobe Photoshop. Other identity “giveaway” infor-
mation (e.g., exact same shoes or T-shirt) were also
edited using Photoshop so that this could not be used to
aid identification.

Participants viewed the body image pairs (N =50) and
made same or different identity decisions as was done in
the body and face tasks. Image pairs were presented in

Same ID @ a
%
Different ID . '

GFMT EFCT

Fig. 1 Example images from the Glasgow Face Matching Test (GFMT), Expertise in Facial Comparison Test (EFCT), Body Task and Biological
Motion Task. The top row shows examples of same-identity pairs; the bottom row shows examples of different-identity pairs

Biological Motion

Body
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pseudo-random order. Same-identity image pairs con-
sisted of different images of the same person.

Biological Motion Task (Baragchizadeh & O'Toole, 2017)
Point light motion videos (N = 20) were obtained from
Baragchizadeh and O’Toole (2017), who created a
database of point light videos using movement data
obtained from Carnegie Mellon University’s motion
capture database. All videos were normalized (to the
same height, leg/arm length, etc.), therefore it was not
possible to do the task based on physical properties.
Where possible, points were positioned on the same
XYZ coordinate for each stimulus. Half of the video
items were same-identity pairs and both videos in each
pair depicted movement of the same action (walk, N = 14;
run, N=1; jump, N=3; box, N=2). In the case of
same-person pairs, two different point light videos of the
same person were presented.

Participants viewed the video pairs presented simul-
taneously on one computer screen. The videos played
three times, and then the participant responded (same
or different). A response triggered the next point light
video pair.

Task order
Participants completed all four tasks in a pseudo-random
order. Example images for each task are visible in Fig. 1.

Results and discussion

Face-recognition-ability groups

Overall accuracy on the GFMT (mean (M) =81.99%,
SE = 1.14) was consistent with standardised norms for
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this task (M = 81.3%, SD =9.7) reported by Burton et al.
(2010). Participants’ accuracy (percent correct) on the
GEMT (short version) was used to classify participants
into face-recognition-ability categories (low, medium, or
high). The 30 lowest scoring participants were assigned to
the low face-recognition ability group (score range 55-76).
The next 30 participants were assigned to the medium
level (score range 77-89) face-recognition-ability group.
The top 30 participants (score range 90-100) were
assigned to the high face-recognition-ability group. Face-
recognition ability (with levels low, medium, and high) was
used as a between-subjects variable in all subsequent
analyses.

Visualisation of individual differences

We begin our results section with the findings that usu-
ally receive least attention in face-recognition experi-
ments—analyses of individual differences. To visualise
individual performance across tasks (EFCT, face; Body;
and BioMo, biological motion), we plotted performance
accuracy on a violin plot, colour coded by
face-recognition-ability group (low, red; medium, yellow;
and high, green) (see Fig. 2). In these plots, we can see
mixing of the face-recognition-ability groups on the body
and biological motion tasks. On the face task (EFCT),
there is visual separation of the face-recognition-ability
groups (i.e., it is easy to see the separation of the three
groups). These visualisations suggest that face-matching
ability (on the GFMT) is not related to performance on
the body or biological motion tasks. However, from visual
inspection of the graphs, GFMT performance appears to
be related to performance on the EFCT.
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Fig. 2 Violin plots show performance accuracy of each participant (small circles), colour coded by face-recognition ability score on the GFMT
(low, red; medium, yellow; high, green) for each of the tasks (Expertise in Facial Comparison Test (EFCT) (Face), Body and BioMo (Biological
Motion). Task is on the x axis, and accuracy (% correct) is on the y axis. For each task, mean performance in each face-recognition-ability group
(low, red; medium, yellow; high, green) is depicted by a large coloured circle
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The GFMT did not appear to be an accurate predictor
of performance on the body or biological motion
identity-matching tasks. Given that the EFCT could also
be considered as a face-based screening measure, we
wondered whether performance on that task would bet-
ter predict performance on the body and biological
motion-matching tasks. Thus, we created a second violin
plot, which grouped performance by score on the EFCT
(our second measure of face-matching ability) to see if
this alternative face-matching task was a better predictor
of performance (Fig. 3). EFCT scores separated on the
GFMT, with a large mix of performance levels on the
body and motion task similar to that shown in the
previous violin plot.

Tracking individual performance across tasks

A limitation of the violin plots is that they do not track
the performance of individuals across the tasks, but ra-
ther show only the locations of high, medium, and low
performance for each task independently. One method
for examining consistency across tasks is to apply the
data stratification method used for the GFMT (low,
medium, and high) to performance on each of the other
task domains. In other words, to assign each participant
to a performance-level group for each of the tasks, and
then to assess the extent to which observers perform
consistently across all tests. Thus, we categorised perform-
ance accuracy on each of the tasks into performance levels
low, medium, or high by ranking performance in each task
and dividing the ranked groups into the three perform-
ance categories. Next, to have an idea of where people
stood, we then counted how often participants in each of
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the GEMT face-recognition-ability groups (low, medium,
or high) fell into the corresponding ability classifications
on each of the other tasks.

Only six participants in the low face-recognition-ability
stratum (N =30) performed with low accuracy on the
other tasks for face, body, and biological motion. Out
of the participants with high face-recognition-ability
(N =30), only six participants performed with high ac-
curacy on all of the tasks. Thus, only 20% of people
in the low face-recognition-ability group, and only
20% of people in the high-ability group, performed at
the respective ability level in all three tasks.

Let us consider the implications of this result for
super-recognisers. Although we did not actively seek
super-recognisers for this study, GFMT scores are re-
ported frequently for super-recognisers. There is not a
clear definition of super-recogniser in the literature (c.f.
Noyes et al., 2017), however super-recognisers often
perform with 95% accuracy or above in the GFMT
(Bobak, Dowsett, & Bate, 2016; Davis et al., 2016; Noyes
& O’Toole, 2017; Robertson et al., 2016). Consequently,
we created a super-recogniser stratum in our analysis
that consisted of participants who scored with 95%
accuracy or above on the GFMT. Among our parti-
cipants, 14 met this criterion; 12 out of these 14 parti-
cipants scored within the high-accuracy classification
on the EFCT, and the remaining 2 scored in the
medium-accuracy category: 9 participants scored within
the high-accuracy classification on the body task, and 9
scored within the high-accuracy classification on the
biological motion task. Critically, only 4 of the 14
top-performers were in the high-performance stratum
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40-
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Fig. 3 Violin plots show performance accuracy of each participant (small circles) colour coded by their Expertise in Facial Comparison Test (EFCT)
ability score (low, red; medium, yellow; high, green) for tasks Glasgow Face Matching test (GFMT) (Face), Body and BioMo (Biological Motion). Task is
on the x axis, and accuracy (% correct) is on the y axis. For each task, mean performance in each face-recognition-ability group (low, red; medium,
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for all of the tasks. Thus, our very best performers on
the GFMT, who might meet the super-recogniser criter-
ion in other studies, had no special advantage in the
body and biological motion tasks.

The pattern of individual performance across the
three tests can be analysed in a more systematic way
with correspondence analysis, a multivariate analysis
method for categorical data (Benzécri, 1973; Greenacre,
2017; Hill, Streuber, Hahn, Black, & O’Toole, 2016).
Correspondence analysis is an exploratory analysis that
shows relationships between variables (task performance)
and observations (participants) in a shared bi-plot. This
plot can be treated as a similarity space in which the pat-
terns can be interpreted from the proximity of points in
the space. In our study, this enabled us to visualise indi-
vidual performance patterns across the three identification
tests. We used each subject’s task performance category
(low, medium, or high) for each of the three tasks (face,
body, and biological motion) as input to the correspond-
ence analysis. In other words, we are analysing the pattern
of performance across tasks for individual participants. In
the output we will see the consistency of individuals’ per-
formance profiles across the tests. The output was a
6-dimensional space with its axes sorted in order of vari-
ance explained. Figure 4 shows the first two axes, which
explained 42.8% of total variance. Each axis is defined by
the variables with large absolute values along that axis and
can be interpreted independently based on these variables.
Axis 1 separates low, medium, and high performance on
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all tasks. Axis 2 separates extreme performance (high and
low) versus medium performance. Notably, the face and
body tasks behave in opposite ways to one another along
axis 2. To assess whether the GFMT was an accurate
predictor of performance on the three identity tasks, each
participant’s data representation was colour coded by their
performance on the GFMT (low, red; medium, yellow;
high, green; top-performer, blue).

Crucially, there is very little accord between perform-
ance accuracy and the spread of colour- coded individual
participant points. If performance on the GEMT relates
to performance on the other tasks, we would expect red
dots to cluster on the left, yellow dots in the middle,
and green and blue dots on the right. Instead, we see a
mixture of coloured dots across the horizontal axis
suggesting that score on the GFMT does not predict
performance on other identity-matching tasks.

Individual differences: conclusions

The visualisations and individual data provide suggestive
evidence that grouping on the GFMT (a standard face-
matching task) relates to performance on a similar
face-matching task (EFCT). However, these visualisa-
tions suggest that a relationship between the GFMT and
the body or biological motion tasks is highly unlikely.
This is reflected across all levels of face recognition ability,
including super-recognisers. Next, we explore individual
data further through the visualisation of scatterplots and
correlation.
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Scatterplots and correlation

A more traditional way to show relationships is a scat-
terplot. We removed the factor “face-recognition-ability
group” to examine point-wise ability relationships be-
tween tasks. The scatterplots for the GFMT against the
EFCT appears linear, whereas the scatterplots for
GFMT with the body and biological motion tests are
less so (see Fig. 5).

This visualisation is supported numerically by correl-
ation. Using the GFMT as our screening test of
face-recognition ability, we calculated the Pearson coeffi-
cients for correlation between accuracy on the GFMT
and accuracy on each of the other tasks. The score on
the GEMT correlated significantly with scores on the
face, body, and biological motion tasks. The highest
correlation was between the GFMT and EFCT (r=.54,
slope of best fit line=.77, p <.001). The next highest
correlation was between the GFMT and the Body task
(r=.25, slope of best fit line = .41, p < .05), followed by the
correlation between the GEMT and the biological motion
task (r = .23, slope of best fit line = .23, p < .05).

Notably, however, correlation was positive in all three
of these sets of tests and was statistically significant at
the standard alpha level of 0.05. In interpreting these
results it is worth bearing in mind that a correlation
value of r explains 7 variance in the relationship be-
tween variables. Therefore, the correlation between the
GFMT and EFCT explains 29% of the relation between
tests, the correlation between GFMT and Body task ex-
plains 6% of the variance between tests, and the correl-
ation between the GFMT and the biological motion task
explains 5% of the variance between tests. As a screening
test, these magnitudes of the variance explained should
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be considered weak—especially for the relationships
between GFMT and body and biological motion tests.
Arguably, the relationship between the two face tests is
also rather weak as a screening test. We return to this
issue in the “Discussion” section.

To test whether the two body tasks were related,
we tested correlation between the Body task and the
biological motion task. There was no correlation be-
tween the Body task and the biological motion task
(r=.01, p>.05).

Group-based assessment of results
ANOVA
Finally, we computed an ANOVA, the most common
statistical analysis reported in the literature on the gen-
eralisability of face-recognition skills across tasks. Data
were analysed using a 3 x 3 mixed ANOVA to assess the
effect of the between-subjects variable face recognition
ability (high, medium, low) and the within-subjects vari-
able task type (face, body, biological motion) on partici-
pants’ accuracy on the matching tasks. The dependent
variable was the percent correct score on the face, body,
and biological motion tasks. We tested for the main ef-
fects of task and GFMT face-recognition performance
category, and also for an interaction between task and
GEMT face-recognition performance category. A main
effect of task type was expected and would simply reflect
that the tasks are of different levels of difficulty.

Of critical interest to this study was whether there was
a main effect of GFMT face-recognition performance
category. A main effect of face-recognition ability would
indicate that task performance, irrespective of task
type, is related to GFMT screening-task performance.

-
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More specifically, a main effect of face-recognition
ability, where there is a linear increase in accuracy from
low to medium to high, would support the conclusion
that the GFMT predicts performance on the other tasks.
A main effect with no interaction would be the result
most consistent with the use of the GFMT as a screening
test. In short, the pattern of results would show a
step-wise increase in each test with GFMT performance
category.

However, the presence of an interaction between task
type and GFMT face-recognition category would indi-
cate a more complex relationship between these two
independent variables. Namely, this indicates that
face-recognition ability on the GFMT is dissociated
from performance on the tasks. An interaction could
indicate that some, but not all, of the tasks are pre-
dicted by the GFMT. An example of this would be if
there were a linear increase in performance for one or
more tasks, but not for the other(s).

As expected, there was a significant main effect of task
type (F(2, 174) =201.66, p<.001, 17p2:.70). Accuracy
was highest for face matching (M =80.95%, SE =.72)
followed by body matching (M = 61.46%, SE =.68) with
lowest performance on the biological-motion-matching
task (M =59.56%, SE = 1.12). There was also a significant
main effect of face-recognition ability (high, medium, low)
on performance accuracy on the tasks (F(2, 87)=
16.96, p <.001, yp® = .28). Highest overall task accur-
acy was achieved by the high face-recognition-ability
group (M =70.71%, SE = .91), followed by the medium
face-recognition-ability group (M =66.51%, SE =.91), and
then the low face-recognition-ability group (M = 64.72%,
SE = .91). Importantly, there was no interaction between
face-recognition ability and task type (F(4, 174) = 1.48,
p =21, yp” = .03), showing that the pattern of increased
accuracy with increased face recognition applied to all
tasks (See Fig. 6).
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For completeness, this analysis was repeated using
d’ as the measure of accuracy. The pattern of results
with d” was identical to that found with percent correct.
The full breakdown of d’ and criterion results are
presented in the Appendix.

Group analysis: conclusions

In summary, analyses that involved summary statistics
based on overall data (correlation) and group data
(ANOVA) produced statistically significant results that are
generally consistent with the conclusion that performance
on the face-recognition screening task (GFMT) predicts, or
is related to, performance on the other person-matching
tasks. If group-based data had been computed blindly, this
would indeed be the conclusion drawn. However, individual
data (visualised in the first stage of the analyses) show
clearly that any group-level effects of face-recognition abil-
ity on task performance must be interpreted with caution.
Whilst face-recognition ability predicts performance at a
group level, the large individual differences in the relation-
ship between face-recognition ability and performance on
the body and biological motion task are strongly indicative
of the conclusion that the GFMT should not be used as a
screening test for the more general task of person matching
from bodies and biological motion.

General discussion

This study is the first to test the relationship among
person-matching skills from the face, body, and bio-
logical motion. The face, body, and biological motion all
contribute to person identification (Hahn et al., 2016;
O'Toole et al, 2011; Rice et al, 2013; Robbins &
Coltheart, 2015; Simhi & Yovel, 2016; Stevenage et al.,
1999; Troje, 2005). We extended previous investigations
with prosopagnosic individuals (Biotti et al., 2017) to in-
clude the general population with different face-recognition
abilities. We also included biological motion as a skill of

Fig. 6 Accuracy (% correct) on each task for each Glasgow Face Matching Test (GFMT) face-recognition-ability level (low face recognition,
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interest. Taken as a whole, our data offer only weak support
for the claim that performance at face recognition predicts
performance on person matching, either from bodies or
biological motion. The weak nature of the effects is clear
from the scatter of individual performance in the violin
plots and in the correspondence analysis. Thus, despite the
fact that the group analyses showed a pattern of perform-
ance that did not violate expectation for the claim, a careful
look at the individual data indicates that group data analysis
is not appropriate for the data. We consider why these tests
are inappropriate as we proceed. Can the GFMT be used as
a predictor for face recognition in another test (e.g., EFCT)?
The results here are less certain and would depend on the
level of accuracy required with such predictions. It is clear
that the GFMT predicted performance on the EFCT with
greater accuracy than it predicted performance for the body
and biological motion tasks. It is also clear that prediction
accuracy exceeded chance. Arguably, however, the individ-
ual differences observed suggest that the use of the GFMT
would lead to substantial numbers of prediction errors at
the level of individual participants.

From a more theoretical point of view, the dissociation
we found between ability to identify people from face
images, body images, and biological motion, is not en-
tirely consistent with the neural hypotheses we consid-
ered. Based on neural data, we predicted that face and
body recognition abilities may be linked (through ventral
stream processing), but face and biological motion
recognition might be dissociated (due to processing of
motion in the dorsal stream). Our results are inconsist-
ent with this hypothesis, because both body and bio-
logical motion recognition ability was dissociated from
face-recognition ability. Our results are also inconsist-
ent with the holistic processing account. The majority
of previous data on processing strategies suggests that
holistic processing characterises face, body, and bio-
logical motion perception. We have no evidence against
this; however, our data would not point to holistic pro-
cessing supporting shared person recognition abilities
across domains.

Returning to the applied question of whether the
GEMT, or any recognition test, is a suitable candidate as
a screening test, the present study points to several im-
portant considerations. First, we must propose an appro-
priate goal for the level of prediction accuracy we
require for a screening task that will be used in an ap-
plied setting. The results of our study highlight that the
literature as a whole may be relying on statistical
methods that do not match the goals of evaluating
screening tasks. Inferential statistical tests determine
whether the strength of a relationship between variables
exceeds a chance relationship. This is a rather low bar
for the question at hand, and it must be decided
whether this is an appropriate threshold for screening
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individuals who will be providing evidence for
life-altering judicial hearings. There is a difference be-
tween our expectation for high-accuracy predictions
that may be dictated by the serious nature of the task
and the group test criterion of “better than chance”.
Therefore, it is not surprising that conclusions based
on group versus individual data have diverged in this
literature (Biotti et al., 2017; Bobak, Bennetts, et al., 2016;
Davis et al., 2016; Noyes et al., 2017).

Second, and a related issue, it has been known for
some time that analyses based on individual differences
do not always converge with analyses based on group
data. An open question is how to address this issue in
the context of evaluating a screening test. If correlation
testing or ANOVA are used as the main analysis method
in a study, the conclusions will be based on comparisons
that are made against chance performance. If other
methods are to be used, the conclusions made from
group and individual data will align if criteria for results
are set at the outset. For example, if above-chance re-
sults are deemed acceptable for the task at hand, group
data can be used to make conclusions, and individual
data used to support a deeper understanding of the re-
sults. Alternatively, if stricter criteria are implemented,
and if the group and individual data contradict one an-
other, then the individual data and regression analysis
must inform conclusions. The present study highlights
the importance of visualising individual data in research.
We suggest that violin plots, or equivalent, be used to
visualise individual data as standard practice.

In terms of moving forward in applied scenarios, a
prediction criterion that is appropriate for the task at
hand must be set for screening tests. The goal, although
implausible in practice, is ideal prediction. Instead,
different criterion levels may be suited to different ap-
plications, because these applications have different
consequences. High criteria should be set for the re-
cruitment of a Federal Bureau of Investigation (FBI)
forensic image examiner, whose identity decisions will
be used as evidence in court. Lower criteria may be
adequate for job roles with less critical consequences.
For jobs that involve low-impact identity decisions,
the results of group-based screening analysis may be
sufficient. When a judicial verdict is made by a
screened identifier, the screening criterion should be
filtered to the court, to the media, and to the public.

Turning to the applicability of results for super-recog-
nisers, our results point to several important findings.
Although we did not actively recruit super-recognisers in
our study, 14 of our high performers on the GFMT scored
with an accuracy that might meet super-recogniser criteria
in other studies. We refer to these 14 individuals as
“top-performers”. Our top-performers on the GFMT
generally performed well on the EFCT, but like
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participants in all other GFMT face-recognition-ability
categories, their performance varied across the body
and biological motion task. This shows that the top-
performers did not have “super” abilities on the body
and biological motion task.

On a theoretical note, the field has not yet converged
on whether face-recognition ability lies on a spectrum,
or whether super-recognisers are a “special” group of
face-recognisers. A recent review of the literature, how-
ever, comes to the conclusion that super-recognisers are
best thought of as the top tail of the distribution of nor-
mal face-recognisers (Noyes et al., 2017). In that review,
the authors note that there is no evidence yet to suggest
that super-recognisers are qualitatively different than
normal face-recognisers. The results of the present study
are consistent with super-recognisers as part of the general
population. Specifically, the distribution of face-recognition
ability was similar to that seen for the other person-percep-
tion tasks and followed a normal distribution (see Fig. 2).
Our findings support that face-recognition ability, like all
other person-perception abilities, falls on a normally dis-
tributed spectrum of ability.

The findings of this study can be used to inform future
research. We argue that future studies must first address
the issue of consistency of performance for same-domain
tests. This study shows some consistency in performance
across two different face-recognition tasks taken on the
same day. It is not yet known whether this consistency will
hold across time. If same-domain tasks are consistent
across time, then this would support a case for implemen-
tation of domain-specific screening tasks to assess each
skill type necessary for a specific person-identification job.

Conclusion

In conclusion, we found no convincing evidence that
face-recognition ability generalises to body and biological
motion recognition. However, we found a moderate pre-
dictive relationship between two tests of face-matching
ability. We highlight the challenge of dealing with discrep-
ancies between the conclusions one would make from in-
dividual versus group-based analyses. The present results
point to the use of individual differences to inform how,
or indeed, whether to apply group analyses—rather than
to use individual differences as a caveat to the conclusions
made with group analyses.

Appendix

Accuracy Measure: d'

For completeness, accuracy was also assessed using d’.
A response was recorded as a “hit” if the participant cor-
rectly responded “same” when the answer was “same”,
and “false alarm” if the participant responded “same”
when the answer was “different”. We conducted 3 x 3
ANOVA, as aforementioned, this time using d” as the
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measure of accuracy. The pattern of results with d’
was identical to that found with percent correct. Spe-
cifically, accuracy varied with task type (F(2, 174) =
242.87, p <.001, np° =.74). The highest accuracy was
achieved for faces (M =2.01, SE =.06), followed by the
body task (M = .63, SE =.04), and then the biological mo-
tion task (M = .53, SE =.06). GFMT face recognition cat-
egory affected performance (F(2, 87) =16.65, p<.001,
np” = .28), again with the groups ordered as high (M =
1.31, SE =.55) better than medium (M =1.00, SE =.55),
better than low (M =.87, SE=.55). Task and GFMT
face-recognition category did not interact (F(4, 174) = 2.11,
p =08, np’ = 04).

Criterion

To measure response bias, criterion was analysed by an
ANOVA with the same design. Here, a positive response
bias indicates a tendency to respond “different” identity,
and a negative response bias indicates a tendency to re-
spond “same” identity. There was a main effect of task
type on criterion (F(2, 174) =54.79, p <.001, np° =.39).
Participants were most likely to make different person
identity decisions for the face task (M=.35, SE=.04),
showed no response bias for the biological motion task
(M =.00, SE=.03), and were more likely to respond
same identity in the body task (M =-.08, SE=.34).
Criterion did not vary across face-recognition category
(F(2, 87) = 1.85, p =.16, yp” = .04). There was no inter-
action between task and face-recognition category
(F(4, 174) = 29, p = .88, np° = .01).
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