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Abstract

Background: Radiological techniques for breast cancer detection are undergoing a massive technological shift—moving
from mammography, a process that takes a two-dimensional (2D) image of breast tissue, to tomosynthesis, a technique
that creates a segmented-three-dimensional (3D) image. There are distinct benefits of tomosynthesis over mammography
with radiologists having fewer false positives and more accurate detections; yet there is a significant and meaningful
disadvantage with tomosynthesis in that it takes longer to evaluate each patient. This added time can dramatically impact
workflow and have negative attentional and cognitive impacts on interpretation of medical images. To better understand
the nature of segmented-3D visual search and the implications for radiology, the current study looked to establish a new
testing platform that could reliably examine differences between 2D and segmented-3D search.

Results: In Experiment 1, both professionals (radiology residents and certified radiologists) and non-professionals
(undergraduate students) were found to have fewer false positives and were more accurate in segmented-3D displays, but
at the cost of taking significantly longer in search. Experiment 2 tested a second group of non-professional participants,
using a background that more closely resembled a mammogram, and replicated the results of Experiment 1—search was
more accurate and there were fewer false alarms in segmented 3D displays but took more time.

Conclusion: The results of Experiments 1 and 2 matched the performance patterns found in previous radiology studies
and in the clinic, suggesting this novel experimental paradigm potentially provides a flexible and cost-effective tool that
can be utilized with non-professional populations to inform relevant visual search performance. From an academic
perspective, this paradigm holds promise for examining the nature of segmented-3D visual search.
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Significance
This study is the first step in establishing a new paradigm
to examine segmented-three-dimensional (3D) visual
search that can be used with professional and non-
professional searchers, which has theoretical and real-world
implications. Theoretically, while there is a long history of
studying the nature of visual search in cognitive psychology,
visual search in a segmented-3D environment has been
relatively unexplored. This new paradigm can add to

existing classic theories with the potential to generate novel
ones. Practically, it is possible to learn about breast cancer
detection by studying how non-professionals search for
targets in a two-dimensional (2D) environment compared
to a segmented-3D environment. The findings from this
study replicated the results typically found in radiology
when comparing breast cancer detection in mammography
(a 2D radiograph of breast tissue) to tomosynthesis (a
segmented-3D tomogram of breast tissue)—search in 2D is
less accurate and quicker. Importantly, the results were
found with both professional and non-professional
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populations, suggesting this may be a general search attri-
bute that can be observed in different populations. Since
professionals are difficult to recruit as participants, it is
potentially quite powerful that this paradigm can be run
with non-professional participants knowing they demon-
strate similar patterns in search performance found within
radiology. Likewise, it is promising that we replicated the
pattern of results found with tomosynthesis radiographic
images with the use of simple stimuli given that there is
more experimental control with simple stimuli and they
can be shown to non-professionals. The primary signifi-
cance of this project is that it takes the first steps in estab-
lishing a new cognitive psychology paradigm that can
inform the growing field of tomosynthesis for breast cancer
detection.

Background
For decades, mammography has been the primary tool
of choice for radiologists who are tasked with detecting
breast cancer (Bleyer & Welch, 2012). Mammography is
the process of creating a single 2D image that represents
an entire breast (a mammogram) and then examining
that image for signs of cancer. Despite extensive training
and often years (or decades) of experience, radiologists
are not perfect and will miss present abnormalities in a
mammogram (Rosenberg et al., 1998).
Radiologists can miss a cancer for a variety of reasons

and the focus on the current study is on one particular
cause—the limits of human cognitive processing. This is
a well-known contributor in radiological misses, with
several robust examples. For example, radiological mis-
ses are more likely to occur when targets are rarely
present (Evans, Birdwell, & Wolfe, 2013) and after
another abnormality has already been found in the same
read (e.g. Berbaum et al., 1991). These two specific
negative impacts on radiological success (low target
prevalence and “satisfaction of search,” respectively) have
been studied by radiologists for decades, with several
insights gained. Interestingly, these two specific cases
have also been examined via basic psychology studies
that have used simplified displays and non-professional
searchers (e.g. undergraduate participants in a psych-
ology study). Such psychology studies have been able
to provide radiologically relevant conclusions about
the limitations of cognitive processing related to target
prevalence (e.g. Van Wert, Horowitz, & Wolfe, 2009;
Wolfe, Horowitz, & Kenner, 2005; however, see Fleck
& Mitroff, 2007) and target number (e.g. Adamo, Cain,
& Mitroff, 2013, 2017; Fleck, Samei, & Mitroff, 2010).
To overcome the limits of human cognitive processing,

radiology has often looked to technological aids. The
goal is to use advances in technology to counter inevit-
able cognitive failures. For example, computer-aided de-
tection (CAD), a recognition software that highlights

potential cancers in a radiograph, can be used by radiol-
ogists to potentially aid them in cancer detection (e.g.
Lehman et al., 2015). However, while CAD can improve
search performance (e.g. Brem, Hoffmeister, Zisman,
DeSimio, & Rogers, 2005; Zheng et al., 2001), it is not
infallible and has been shown to lead to no improvement
in accuracy (e.g. Lehman et al., 2015) and even more
misses under conditions when multiple abnormalities
are present (e.g. Berbaum, Caldwell, Schartz, Thompson,
& Franken Jr., 2007).
The radiological field of breast imaging is currently

undergoing a new technological shift to improve breast
cancer detection by changing how radiologists view
medical images. Specifically, imaging is moving away
from mammography, a 2D imaging technique, to
tomosynthesis, a segmented-3D imaging technique.
Unlike mammography, where the volume of the breast
is compressed into one 2D image, tomosynthesis is the
process of dividing the volume of the breast into many
segmented images (i.e. slices) to create a segmented-
3D display. With tomosynthesis, radiologists have the
ability to search in depth by moving from slice-to-slice
allowing them to better distinguish signs of cancer
from normal breast tissue. Tomosynthesis has been a
success to date; with tomosynthesis, radiologists tend
to make fewer false positives/false alarms (e.g. incor-
rectly indicating a benign mass as malignant; Durand
et al., 2015; Friedewald et al., 2014; Skaane et al.,
2013) and detect cancer more often (Ciatto et al.,
2013). However, this improvement comes at a cost as
it takes radiologists significantly longer, even up to
double the amount of time, to evaluate a patient with
a combined tomosynthesis and mammography read
compared to mammography alone (Bernardi et al.,
2012; Dang, Freer, Humphrey, Halpern, & Rafferty,
2014; Michell et al., 2012; Zuley et al., 2010). The
increase in evaluation time is not a subtle point as this
has put enormous stress on the workload of radiolo-
gists. In general, overwork can lead to several negative
outcomes, including more missed cancers (e.g. Kru-
pinski, Berbaum, Caldwell, Schartz, & Kramer, 2012)
and legal concerns (e.g., Berlin, 2000).
Beyond the clinical effects of tomosynthesis, there is

little work on the nature of searching in a segmented-3D
environment. While there is a growing literature of
visual search in 3D environments created through
stereoscopic techniques (i.e. presenting different views to
the right and left eye to induce a 3D effect; e.g.
Finlayson, Remington, Retell, & Grove, 2013; McIntire,
Havig, & Geiselman, 2014), only recently has there been
research on searching through environments with suc-
cessive slices that allow the viewer to move in and out of
the depth plane (e.g. Drew et al., 2013; Wen et al., 2016).
For example, one recent study (Wen et al., 2016) found
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that different search styles within a segmented-3D en-
vironment changes what is more salient to an obser-
ver. Specifically, when observers “drilled” (i.e. staring
at a region within a segmented-3D environment and
rapidly scroll from slice to slice through the depth
plane) they were drawn toward 3D dynamic motion
saliency, and when observers “scanned” (i.e. searching
over a large area of a given slice before moving to the
next slice) they were drawn toward 2D saliency. With
the ability to utilize different search styles and the
ability to search in depth, this raises questions as to
what the cognitive processes underlying segmented-3D
search are and how they compare to that of 2D
search.
The current study used a simplified cognitive psych-

ology paradigm to examine 2D and segmented-3D
search in both professional (radiology residents and cer-
tified radiologists) and non-professionals (undergraduate
students). Beyond the theoretical reasons for comparing
search performance in a 2D and segmented-3D envir-
onment, the main motivation for conducting this
experiment was to explore whether the results would
yield similar findings to that of radiologists when using
mammography and tomosynthesis in practice. If this
novel lab-based task replicated the pattern of results
found within radiology (i.e. segmented-3D search/
tomosynthesis revealing decreased false alarms, in-
creased hits, and increased search times), the control
and flexibility of this program could be used to better
understand what underlies the differences in search
performance. Another key motivation for this experiment
was to compare performance between professionals and
non-professionals. If non-professionals performed simi-
larly to professionals, future research could explore
segmented-3D search with non-professionals and gain
insight as to how professionals would perform with
tomosynthesis. Since professionals are difficult to access
as participants in research studies (due to their time
constraints), and there is less experimental control
when using medical images, testing non-professionals
in a laboratory based, segmented-3D search would be
a faster, easier, and more flexible alternative. This
experimental path mirrors prior efforts from our
research team that created a simplified paradigm that
could be used with non-professionals (Fleck et al.,
2010) to potentially inform radiological questions (e.g.
Adamo, Cain, & Mitroff, 2015; Cain, Dunsmoor,
LaBar, & Mitroff, 2011; Cain & Mitroff, 2013).
To preview the results, professionals and non-

professionals replicated the pattern of results found within
radiological practice—there were fewer false alarms, better
accuracy, and longer response times in segmented-3D
search compared to 2D search. Despite many differences
between the two participant populations (e.g. search

experience, age), there were no significant differences in
search performance.

Experiment 1
Methods
Participants
Professionals A total of 30 participants composed of
radiology residents and certified radiologists were re-
cruited from the Radiological Society of North America
conference in Chicago, Illinois between 27 November 27
and 2 December 2016. This sample size was determined
by how many professionals could be recruited at the
conference. The participants had no restriction on their
specialty (e.g. breast, thoracic, general) and were entered
in a drawing for a chance to win a GoPro Hero 4 for
their participation. Three participants were not in-
cluded in the final analysis: two were removed due to
experimental error during data collection and one for
quitting the experiment early, leaving a total of 27
participants (14 radiology residents and 13 certified
radiologists). The 27 participants’ age range was 24–
65 years (radiology residents: age range = 24–39 years,
M = 30.69, SD = 3.88; certified radiologists: age range =
33–65 years, M = 46.92, SD = 10.66) and there were 11
women and 16 men. The average number of cases evalu-
ated per week was in the range of 50–600 (radiology resi-
dents: range = 50–300, M = 150.91, SD = 93.96; certified
radiologists: range = 100–600, M = 340.00, SD = 207.67).
There were overall no differences in search performance
between radiology residents and certified radiologist
(see Appendix 1), so they were treated as a single
population group (professionals) when compared to
undergraduate students.

Non-professionals A total of 31 undergraduate students
(non-professionals) were recruited from The George
Washington University to approximately match the
number of recruited professionals. They had no radi-
ology experience and received course credit in exchange
for participation. There were 20 women and 11 men
with an age range of 18–23 years (mean age = 18.8 years;
SD = 1.0).

General procedures
Participants sat approximately 45 cm (with no head
restraint) from the center of a 13-in. MacBook Pro
laptop computer. Stimulus displays were presented
using Matlab software (The MathWorks, Natick,
MA, USA) and Psychophysics Toolbox 3.0.12
(Brainard, 1997; Pelli, 1997) at a resolution of 800 ×
600 pixels. The search displays were constructed in
3D space, filling in a cube array that was 600 ×
600 × 600 voxels.1 This cube was then trimmed into
a 600-voxel diameter sphere. To generate a cloudy
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background akin to a mammogram, 250 ellipsoids
(i.e. clouds) in the range of 50–350 voxels were
created and randomly placed in the sphere. After-
wards, a 3-voxel Gaussian filter was applied twice
to smooth the image.
Target-present displays contained one T-shaped target

and 99 L-shaped distractors and target-absent displays
contained 100 L-shaped distractors. Each item (target T
or distractor L) could be rotated 0, 90°, 180°, or 270°
along the y-axis (see Fig. 1) and was 15 × 7 × 17
voxels (0.89° × 0.64° × 1.3°) for the X, Y, and Z coor-
dinates, respectively. The T-shaped targets were con-
structed with two perfectly aligned perpendicular cross
bars and the two cross bars were offset by 3 voxels
(0.27°) to form non-perfect, L-shaped distractors. Both
the targets and distractors had a 3-voxel gap between
the cross bars. Colors of the search items were ran-
domly selected within a gray-scale range of 47–63%
white. The search items were randomly placed within
a 15 × 15 × 15 location matrix for the 3D displays.
The matrix was transcribed into the sphere and any
cells that overlapped the perimeter of the sphere were
removed, so no target or distractor could appear
outside the display area. The search items were then
jittered by 0–16 pixels along the x- and y-axes and
by 0–32 pixels in the z-axis for the 3D displays.
Spheres were either compressed into a single “flat”

plane for the 2D-search displays (see Fig. 1a) or were
divided and compressed into 30 different slices for the
3D-search displays (see Fig. 1b and c). When compres-
sing the sphere array for the 2D-search displays the
average pixel color (for both items and the background)
for a given x- and y-coordinate voxel was averaged
between the middle three slices to create a single, 2D
search plane. For the 3D search displays, each slice was
similarly computed by taking the average colors of the
pixels across every 20 voxels’ z-coordinate. This process
created 30 slices per display, effectively making it a
“segmented-3D” display wherein search items could be
contained within one slice or across two slices.2 This
process caused a high probability that the search items
would overlap in the 2D displays and a low-probability
of overlap on each slice in the segmented-3D displays
(see Fig. 1).
A tick bar appeared on the right side of the displays

(see Fig. 1), with each tick representing one slice in
the depth plane. A marker moved as participants
traversed from slice to slice and indicated which slice
the participant was currently on when searching
through the segmented-3D displays. The slice number
was also presented at the top left of the displays
(see Fig. 1). For the 2D-search displays, there was a
single tick mark and the number in the top left
corner displayed the number “1.”

There were four practice trials and 24 experimental
trials. The practice trials were separated into two blocks
(2D, segmented-3D) and the experimental trials were
separated into four blocks (two 2D blocks and two
segmented-3D blocks) with an equal number of trials
per block. Block order was randomized for the prac-
tice. Block order was also randomized for the first
two experimental blocks and then again for the last
two experimental blocks. The trials in the last two
experimental blocks were repeats of the trials from
the first two experimental blocks, but in the opposite
display type (e.g. the x and y coordinates for targets
and distractors in the segmented-3D trials from the
first half of the experiment were repeated for the 2D
trials in the second half of the experiment). There
was an equal number of target-present and target-
absent trials with a randomized and equal distribution
of trials per block.
For the segmented-3D displays, participants used a

mouse wheel to scroll from slice to slice and for the
2D displays the mouse wheel was not used. Partici-
pants were instructed to indicate the target location
via a mouse click and press the spacebar if they believed
no target was present. The trial ended once either a
mouse click was made or spacebar was pressed. If par-
ticipants reached a 60-s time limit without making a
response, the trial ended and was considered a “time-
out.” The tick bar turned yellow after 50 s and then
red after 55 s to inform participants that the trial was
about to end. The next trial loaded during the inter-
trial interval and started immediately once loaded.
Similarly, after each block, the next block automatic-
ally began. The experiment took approximately
30 min in total.

Planned analyses
The primary goal of Experiment 1 was to explore
whether the results would yield similar findings to that
of radiologists when using tomosynthesis and mammog-
raphy. When comparing tomosynthesis to mammog-
raphy, there are fewer false alarms (e.g. Skaane et al.,
2013), improved cancer detection (Ciatto et al., 2013),
and a significantly longer time spent evaluating a pa-
tient’s case (e.g. Bernardi et al., 2012). As such, the three
respective key measures of interest for Experiment 1
were false alarm rate, hit rate, and target-absent re-
sponse time. Target-absent response time was assessed
because it represents how long a participant will spend
searching before deciding to quit (Chun & Wolfe, 1996).
There are additional measures of interest that are stan-
dard dependent variables in visual search experiments
(e.g. timeout rate, target-present response time) but they
were not primarily relevant for the current study and
can be found in Appendix 2.
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Note that trials where participants timed out were
excluded for the hit rate analysis and trials where
participants timed out or false alarmed were excluded
from the target-absent response time analysis. Also,
while the goal of repeating trials from experimental
blocks 1 and 2 in blocks 3 and 4 in the other display
type was to explore differences between the repeated
and initial trials, there were no meaningful differences
based on repetition. Specifically, there was no signi-
ficant difference in search performance between the
2D trials within the first half of the experiment
(where the x and y coordinates of a specific 2D trial
were seen for the first time) and the 2D trials in the
second half of the experiment (where the x and y
coordinates previously seen within the segmented-3D
display of the first half of the experiment were
repeated in the 2D displays). Likewise, there were no
significant differences in performance for the
segmented-3D trials from the first half of the experi-
ment and those from the second half. As such, the
repetition aspect of the study design will not be dis-
cussed further.

Results
For each of the three primary dependent variables of
interest (false alarm rate, hit rate, and target-absent
response time), a 2 × 2 analysis of variance (ANOVA)
was run with search display as a within-subjects factor
(2D, 3D) and profession as a between-subjects factor
(professionals, non-professionals). For brevity, we refer
to the segmented-3D displays in the results section as
just “3D.” Below is an overview of the results and the
details are in Table 1.

False alarm rate
On average, the false alarm rate was 10.34% for pro-
fessionals (2D: 19.94%; 3D: 1.49%) and 13.17% for non-

professionals (2D: 24.19%; 3D: 2.15%). There was a sta-
tistically significant main effect of display type (F(1,56) =
71.48, p < 0.001, ηp

2 = 0.56, BF10 = 4.24 × 1010)3 with
greater false alarms on 2D-search trials compared to
3D trials (See Fig. 2). There was no significant main
effect of profession (F(1,56) = 0.89, p = 0.35, ηp

2 = 0.02,
BF10 = 0.29) and no significant interaction between display
type and profession (F(1,56) = 0.90, p = 0.35, ηp

2 = 0.02,
BF10 = 0.40).

Hit rate
On average, the hit rate was 55.52% for professionals
(2D: 40.80%; 3D: 70.25%) and 45.97% for non-
professionals (2D: 27.63%; 3D: 64.30%). Data from one
professional were not included in the final analysis as
that individual timed out on all 3D trials. There was a
statistically significant main effect of display type
(F(1,56) = 59.73, p < 0.001, ηp

2 = 0.51, BF10 = 1.23 × 109)
with a lower hit rate on 2D search trials compared to
3D trials (see Fig. 2). There was no significant main
effect of profession (F(1,56) = 3.11, p = 0.08, ηp

2 = 0.05,
BF10 = 0.60), and no significant interaction between
display type and profession (F(1,56) = 0.71, p = 0.40,
ηp

2 = 0.01, BF10 = 0.41).

Target-absent response times
On average, the target-absent response time was 47.92 s
for professionals (2D: 45.35 s; 3D: 50.49 s) and 47.12 s
for non-professionals (2D: 42.47 s; 3D: 51.77 s). Data
from two professionals were not included in the final
analysis because they timed out or false alarmed on
either all 2D or 3D trials. There was a statistically
significant main effect of display type (F(1,54) = 43.12,
p < 0.001, ηp

2 = 0.43, BF10 = 6.78 × 106) with a shorter
target-absent response time on 2D trials compared to
3D trials (see Fig. 2). There was no significant main
effect of profession (F(1,54) = 0.13, p = 0.73, ηp

2 = 0.002,

a b c

Fig. 1 Experiment 1’s 2D- and segmented-3D-search displays. a Sample stimuli of a 2D-search display where all search items appear in a single
“flat” plane. b Sample stimuli of a slice in the segmented-3D-search display. Search items were randomly assigned to each slice, and unlike in the
2D display, did not all appear on the same depth plane. c Illustration of how participants could move from slice to slice to search in depth in the
segmented-3D displays
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BF10 = 0.29) and no significant interaction between display
type and profession (F(1,54) = 3.57, p = 0.06, ηp

2 = 0.002,
BF10 = 1.19).

Discussion
Search performance on 2D displays compared to
segmented-3D displays mirrored how radiologists
typically perform when comparing mammography to
tomosynthesis: false alarm rates (false positives) were
higher, hit rates (true positives) were lower, and
target-absent response times were shorter for 2D
displays compared to segmented-3D displays. The
Bayes factor for the main effect of displays provided
“decisive” evidence in a favor of the alternative hy-
pothesis suggesting that there was a difference be-
tween display types (Wetzels et al., 2011). Additionally,
while the interaction effect for target absent RT was
marginally significant (p = 0.06), the Bayes factor
provided “anecdotal evidence” in support of the
alternative hypothesis. This appears to be driven by
a larger difference between 2D and segmented-3D
display types for non-professionals compared to pro-
fessionals. The current results were encouraging
given that the findings replicated the results typically
found within radiology. However, one potential

limitation of this study was that the background in
the search displays was not realistic in comparison
to actual radiographs. Experiment 2 accounted for
this by using a more realistic background that has
been shown to more closely resemble an actual
mammogram (Castella et al., 2008).

Experiment 2
To ensure that the results from Experiment 1 could
be replicated and were not driven by the background
of the stimulus displays, the displays of Experiment 2
consisted of a more realistic mammography back-
ground (Castella et al., 2008). To preview the results, in
Experiment 2 non-professionals replicated the pattern of
results found within radiological practice and Experiment
1—there were fewer false alarms, better accuracy, and
longer response times in segmented-3D search compared
to 2D search.

Methods
Participants
Thirty-one undergraduate students were recruited
from The George Washington University. One par-
ticipant reported previous radiological experience;
therefore, his/her data were removed from the

Table 1 Summary of Experiment 1 results for professionals and non-professionals
Key measures Radiologists Non-professionals Display type (2D vs 3D) Profession

(Professionals vs.
non-professionals)

Interaction

2D 3D 2D 3D

False alarm rate (%) 19.14 1.54 24.19 2.15 p < 0.001, ηp2 = 0.56, BF10 = 4.24 × 1010 p = 0.35, ηp2 = 0.02, BF10 = 0.29 p = 0.35, ηp2 = 0.02, BF10 = 0.40

Hit rate (%) 40.80 70.25 27.63 64.30 p < 0.001, ηp2 = 0.51, BF10 = 1.23 × 109 p = 0.08, ηp2 = 0.05, BF10 = 0.60 p = 0.40, ηp2 = 0.01, BF10 = 0.41

Target-absent response
time (s)

45.35 50.49 42.47 51.77 p < 0.001, ηp2 = 0.43, BF10 = 6.78 × 106 p = 0.73, ηp2 = 0.00, BF10 = 0.29 p = 0.06, ηp2 = 0.04, BF10 = 1.19

For the key measures, there was a lower false alarm rate, a higher hit rate, and a longer average response time on target-absent trials for segmented-3D
displays compared to 2D displays. P values < 0.05 are indicated in bold and the Bayes factors are indicated in italics

Fig. 2 Key measures for professionals and non-professionals in 2D and segmented-3D visual search in Experiment 1. The asterisks indicate a main effect
of display type: false alarm rates were lower, hit rates were higher, and target-absent response times were longer for segmented-3D displays compared
to 2D displays. Error bars represent the standard error of the mean
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analyses. In addition, one participant’s data were re-
moved as she/he timed out on too many trials (more
than 3 standard deviations over the mean). The
remaining 29 participants comprised 22 women and
seven men with an age range of 18–23 years (mean
age = 19.7, SD = 1.08). They had no previous radiology
experience and received course credit in exchange for
participation.

General procedures
The methods were the same as Experiment 1 except
for the following three changes. First, the display
backgrounds (see Fig. 3) were created by Castella et
al. (2008) to encourage “drilling” behavior while
searching the segmented-3D displays as the search
items would blend better with the background (Drew
et al., 2013). Castella et al. (2008) generated a number
of possible backgrounds and found that one, which
was called “doubiso,” best approximated mammo-
grams. As such, the doubiso synthetic mammographic
texture was used here. To incorporate the doubiso
image into the 3D sphere for our segmented-3D dis-
plays, each trial contained three randomly generated
doubiso images that were placed at the start, middle,
and end of the sphere along the depth plane. The
intermediate points were averaged between these three
images to create a continuous space. The 30 slices
were created as described for Experiment 1. For the
2D displays, only one doubiso synthetic texture was
used as the search display. Second, there were 80
items per search (as opposed to 100), each with a
dimension of 20 × 7 × 22 voxels (1.19° × 0.64° × 1.3°), and a
color range of 28–47% white. Third, there were 48
experimental trials (12 trials per block) with four prac-
tice trials and observers had up to 1 h to complete
the experiment. Doubling the number of trials from
Experiment 1, allowed the opportunity to explore

whether there were any differences in sensitivity (A’) and
bias (B”) between the two display types.4

Results
T-tests were conducted to compare the false alarm
rate, hit rate, and target-absent response times on 2D
vs segmented-3D search displays. Similar to Expe-
riment 1, the timeout rate, the correct rejection rate,
and the target-present response time were also assessed
and are reported in Appendix 2. For brevity, we refer
to the segmented-3D displays in the results section as
just “3D.”
Non-professionals in Experiment 2 had an average

false alarm rate of 19.18%. There was a statistically
significant difference between display types (t(28) =
6.19, p < 0.001, BF10 = 1.62 × 104) with greater false
alarms on 2D trials (M = 27.59%) compared to 3D
trials (M = 10.78%). The average hit rate was 42.26%.
There was a statistically significant difference
between display types (t(28) = 5.93, p < 0.001, BF10 =
8.46 × 103) with a lower hit rate on 2D trials (M =
29.34%) compared to 3D trials (M = 55.28%). The
average target-absent response time was 41.87 s.
There was a statistically significant difference
between display types (t(28) = 7.67, p < 0.001, BF10 =
5.84 × 105) with a shorter target-absent response
time on 2D trials (M = 35.06 s) compared to 3D trials
(M = 47.10s).
Observers were above chance for sensitivity to tar-

gets (i.e. more likely to identify a search item as a
target) in both 2D (A’ = 0.71; t(28) = 8.44, p < 0.001,
BF10 = 3.46 × 106) and segmented-3D displays (A’ = 0.81;
t(28) = 15.82, p < 0.001, BF10 = 3.44 × 1012). Furthermore,
they were more sensitive in segmented-3D displays
compared to 2D displays (t(28) = 2.91, p = 0.007,
BF10 = 6.15). Observers were conservative in their
bias (i.e. more likely to identify a search item as a

a b c

Fig. 3 Experiment 2’s 2D and segmented-3D search displays. a Sample stimuli of a 2D-search display where all search items appear in a single
“flat” plane. b Sample stimuli of a slice in the segmented-3D-search display. Search items were randomly assigned to each slice, and unlike in the
2D display, did not all appear on the same depth plane. c Illustration of how participants could move from slice-to-slice to search in depth in the
segmented-3D displays
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target) in both 2D (B” = 0.33; t(28) = 4.61, p < 0.001,
BF10 = 3.15 × 102) and segmented-3D displays (B” = 0.61,
t(28) = 7.13, p < 0.001, BF10 = 1.59 × 105). Additionally,
they were more conservative in their bias for
segmented-3D displays compared to 2D displays
(t(28) = 3.24, p = 0.003, BF10 = 12.63) (see Fig. 4).

Discussion
When using a more realistic mammographic background
in 2D and segmented-3D- search displays, the results
replicated the typical findings from radiology (when
comparing mammography to tomosynthesis) and the
key findings from Experiment 1; the false alarm rates
were lower, the hit rates were higher, and the response
times for target-absent trials were longer for segmented-
3D displays compared to 2D. This replication reinforces
the results from Experiment 1 and further suggests that
the paradigm assessed here can potentially be used to
examine the differences between mammography and
tomosynthesis. Furthermore, with an increase in trials
from Experiment 1, we could explore whether there
was a difference in sensitivity and bias between the
2D and segmented-3D displays. Observers were more
sensitive to targets and more conservative in their bias
in the segmented-3D displays compared to the 2D dis-
plays. These analyses provided additional evidence for
the benefits of searching through segmented-3D dis-
plays compared to 2D displays.

General discussion
As radiology practices move from relying on mam-
mography to tomosynthesis for breast cancer detection,

it is critical to understand the potential positives and
negatives of the relatively new technology of tomo-
synthesis. Academic radiology has begun the process
of examining tomosynthesis (e.g. Skaane et al., 2013)
but many questions remain. The goal of the current
study was to explore whether a basic cognitive psych-
ology paradigm, utilizing non-professional partici-
pants, could be leveraged to further inform the use of
tomosynthesis. The initial step in this process was
creating a 2D and segmented-3D visual search para-
digm and explore whether search performance mim-
icked the results when comparing mammography to
tomosynthesis.
In Experiment 1, both professionals (radiology resi-

dents and certified radiologists) and non-professionals
(undergraduate students) searched through 2D and
segmented-3D displays with a cloudy gray background.
The results replicated the pattern of findings from the
radiological literature (e.g. Bernardi et al., 2012; Ciatto
et al., 2013; Skaane et al., 2013)—there was a lower
false alarm rate, a higher hit rate, and more time was
spent determining that a target was absent on
segmented-3D displays compared to 2D displays. In
Experiment 2, a second group of non-professionals
conducted this search paradigm with a more realistic
mammography-like background. The results again rep-
licated the pattern of findings from the radiological
literature.
While there was no main effect of search perform-

ance between professionals and non-professional, this
does not necessarily indicate there are no differences
in search ability. It is notoriously difficult to reason

Fig. 4 Sensitivity (A’) and bias (B”) measures for 2D- and segmented-3D-search displays in Experiment 2. The asterisks indicate a significant
difference between A’ and B” between 2D and segmented-3D displays with a greater A’ and B” in segmented-3D displays

Adamo et al. Cognitive Research: Principles and Implications            (2018) 3:17 Page 8 of 13



from a null result and there could be any number of
additional factors at play. For example, it could be
that radiologists did have superior search abilities but
demonstrated no difference in search performance as
a result of the 60 s time restriction and the one tar-
get (at most) per search display. While radiologists
may have to inspect a set number of medical images
per day, there is no time limit to how long radiolo-
gists can spend per image or how many abnormalities
may be present in a given image. If given more time
and/or more targets per search display, it may have
been possible to reveal differences between the popu-
lation groups.
Another possible reason there were no significant

differences in search performance between profes-
sionals and non-professional was that any potential
search advantage that professionals had due to experi-
ence could have been offset by their age. Professionals
on average were older than the non-professional
participants (see “Methods” for Experiment 1) and it
is known that older adults typically show a cognitive
decline in attention and memory (e.g. Fortenbaugh et
al., 2015). That is, it could be that our two participant
groups look similar in raw performance and in terms
of statistical comparisons, but that they might differ
in underlying abilities. However, a similar study com-
paring aviation security officers and undergraduates
found that aviation security officers are better than
undergraduates at a simplified visual search task
(Biggs, Cain, Clark, Darling, & Mitroff, 2013). More-
over, there is additional insight from a study that
compared orthodontists (who specialize in facial sym-
metry) to undergraduate participants (Jackson, Clark, &
Mitroff, 2013). The orthodontists (who were, on average,
older than the undergraduates) were more accurate on
a facial symmetry judgement task but not on a non-
facial symmetry judgement task. This suggests that
age is not the sole factor in determining performance
differences. While a potential age-related effect is just
one hypothesized difference, the key point is that the
null result for population differences should be evalu-
ated in the context that there could be additional dif-
ferences between populations that affect performance
that could not be observed due to the given parame-
ters of this study.
A key goal of the current project was to generate a

simulated paradigm that could be used to assess cog-
nitive differences between mammography and tomo-
synthesis. As such, it is important to compare
performance found here to what is typically found in
the clinic. One aspect that stands out is that when
comparing false alarm rates (i.e. false positives), hit
rates, and response times differences between mam-
mography and tomosynthesis from the radiological

literature (e.g. Bernardi et al., 2012; Ciatto et al.,
2013; Skaane et al., 2013) to the results reported here,
our results yielded a smaller percent difference be-
tween 2D and segmented-3D searches. For example,
it took radiologists approximately 100% longer when
searching with tomosynthesis compared to mammog-
raphy alone (Bernardi et al., 2012). In our study it
took participants 10–20% longer in Experiment 1 and
about 35% longer in Experiment 2 to terminate
search in segmented-3D searches compared to 2D
searches. The larger difference within radiology could
be driven by the inherent variability in difficulty when
searching actual medical images. The displays used in
this study were relatively the same difficulty; there
was always one target, the same amount of items per
search, and the same number of slices per search for
the segmented-3D search displays. In medical images,
difficulty may be potentially affected by the density of
breast tissue, the number of abnormalities in a dis-
play, and the number of slices per tomogram.
In future studies, potential limitations of this study,

such as the density of the background, the number of
targets, and the number of slices per search display
(for segmented-3D searches), can be modulated from
trial to trial to observe whether they can influence
the differences between the displays used here and
actual medical images. In addition to these limitations,
another potential limitation is how observers searched
within our segmented-3D displays. Previous studies
utilizing eye tracking observed that radiologists both
“drilled” (i.e. staring at a region within a segmented-
3D environment and rapidly scrolling from slice to
slice) and “scanned” (i.e. searching over a large area
of a given slice before moving to the next slice) volu-
metric images such as the segmented-3D used in this
study (Drew et al., 2013). In Experiment 1, radio-
logists answered follow-up questions and self-reported
utilizing both drilling and scanning techniques. How-
ever, 85% of radiologists that chose to respond to
these questions reported that they exclusively
scanned the segmented-3D images suggesting that
these displays could have been searched differently
than the volumetric displays used within radiology.
The background of Experiment 2 was designed to
encourage more drilling behavior (as items tended to
blend better with the background), but this can be
empirically examined in future studies (e.g. by moni-
tor eye movements to assess whether observers are
“drilling” and/or “scanning”).
Since this is one of the few studies to use a cognitive

psychology paradigm to explore search performance
on segmented-3D displays (e.g. Wen et al., 2016), it is
important to consider how search performance is
affected when searching in other 3D environments
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(i.e. non-segmented 3D displays). The main differ-
ence between the segmented-3D displays used here
and other non-segmented-3D displays is that the
illusion of depth for segmented-3D displays is cre-
ated by having search items persist across continu-
ous slices. Non-segmented-3D displays create the
illusion of depth by presenting different views to the
right and left eye (either via a stereoscope or with
virtual reality goggles). Interestingly, the current
finding of an improvement in target detection for
the segmented-3D displays aligns with typical results
found when comparing non-segmented-3D displays
to 2D displays (e.g. Finlayson et al., 2013; McKee,
Watamaniuk, Harris, Smallman, & Taylor, 1997).
Much is left to explore, but the data collectively fit
with a hypothesized improvement in 3D search via a
reduction in local clutter (noise/distractors within
the vicinity of a target; see Figs. 1b and 3b). A de-
crease in the amount of local clutter around a target
has been shown to improve search performance in
both single-target and multiple-target searches
(Adamo et al., 2015; Asher, Tolhurst, Troscianko, &
Gilchrist, 2013), so this could be a viable mechanism
at play here. Future research could vary local clutter
in 2D, segmented-3D, and non-segmented 3D search
displays to help determine whether this is one of the
reasons for an improvement in target detection when
searching in 3D.
Beyond the theoretical implications this study has for

understanding the nature of 3D search, practically this
study is the first step in studying the differences between
tomosynthesis and mammography without actual med-
ical images and with a non-professional population.
Since the results replicated the findings from the radio-
logical literature when comparing mammography to
tomosynthesis, this suggests that artificially created 2D
and segmented-3D-search displays can be beneficial in
understanding the differences between mammography
and tomosynthesis. Furthermore, since there was no
difference between professionals and non-professionals
from Experiment 1, the results from non-professionals
on segmented-3D search displays may provide insight
as to how professionals would perform when search-
ing with tomosynthesis. This is quite advantageous
from a research viewpoint because radiologists can be
difficult to recruit as participants (due to their time
constraints) and there is less control over, and flexibility
with, medical images as stimuli. Testing non-professionals
in a segmented-3D-search paradigm could provide a
faster, easier, and cheaper alternative. Future research
can take advantage of using 2D and segmented-3D-
search displays to explore other critical factors that have
been shown to affect search performance (e.g. clutter and
low-target prevalence).

Conclusion
The current study investigated whether a cognitive psych-
ology paradigm could be used to inform the use of tomo-
synthesis in breast cancer detection. We created 2D and
segmented-3D visual search paradigms to explore whether
the search performance of both professionals and non-
professionals mimicked the patterns of search perfor-
mance observed when comparing mammography to
tomosynthesis in the clinic. The results matched the
performance patterns from the radiological literature—a
lower false alarm rate, a higher hit rate, and more time
spent searching on segmented-3D displays compared to
2D displays (e.g., Bernardi et al., 2012; Ciatto et al., 2013;
Skaane et al., 2013). These findings suggest that artificially
created 2D and segmented-3D-search displays can poten-
tially be a valid tool to help elucidate the difference
between mammography and tomosynthesis.

Endnotes
1We use the term “voxels” to indicate pixels that are in
Z-dimension.

2When search items appeared across multiple slices,
they would become either lighter or darker from the
previous slice depending on how many voxels of any
particular item were averaged with the lighter back-
ground. This was done to give the impression of
“depth” similar to how abnormalities can change in
salience within a tomogram.

3According to Wetzels et al., 2011, for a Bayes factor
value in favor of the alternative hypothesis (in the
current experiment that would be that there is a
difference between searching in 2D displays and
segmented-3D display), a value > 100 provides
“decisive” evidence, 30–100 provides “very strong”
evidence, 10–30 provides “strong” evidence, 3–10
provides “substantial” evidence, and 1–3 provides
“anecdotal” evidence in favor of the alternative
hypothesis. Likewise, for a Bayes factor value in favor
of the null hypothesis (i.e. that there is no difference
between searching in 2D displays and segmented-3D
display), a value < 1/100 provides “decisive” evidence,
1/100–1/30 provides “very strong” evidence, 1/30–1/10
provides “strong” evidence, 1/10–1/3 provides
“substantial” evidence, and 1/3–1 provides “anecdotal”
evidence null hypothesis.

4A’ and B” are measures used for non-parametric data
(Snodgrass and Corwin, 1988). These measures were
used because more than half the participants did not
false alarm in the target absent, segmented-3D condi-
tion. A’ indicates how easy it was to identify an item as
a target and the B” indicates how willing an observer
was to say a target was present at the cost of making a
false alarm. An A’ measure of 0.5 signifies chance
performance and a B” measure of 0 signifies no bias.
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Appendix 1
Comparing radiology residents to certified radiologists

Table 2 Summary of results for the key and other measures from radiology residents and certified radiologists for Experiment 1

Radiology residents Certified radiologists Display type (2D vs 3D) Profession (Radiological
residents vs certified
radiologists)

Interaction

2D 3D 2D 3D

Key measures

False alarm rate (%) 14.88 2.38 23.71 0.64 p < 0.001, ηp
2 = 0.57,

BF10 = 3.34 × 104
p = 0.33, ηp

2 = 0.04,
BF10 = .39

p = 0.10, ηp
2 = 0.10,

BF10 = 1.16

Hit rate (%) 47.26 79.76 33.85 60.00 p < 0.001, ηp2 = 0.39,
BF10 = 1.96 × 102

p = 0.07, ηp2 = 0.12,
BF10 = 0.87

p = 0.67, ηp2 = 0.01,
BF10 = 0.39

Target- absent response
time (s)

47.07 51.25 43.48 50.07 p < 0.01, ηp2 = 0.36,
BF10 = 19.67

p = 0.56, ηp2 = 0.02,
BF10 = 0.52

p = 0.35, ηp2 = 0.04,
BF10 = 0.49

Other measures

Timeout rate (%) 17.26 10.11 6.41 11.54 p = 0.70, ηp
2 = 0.01,

BF10 = .29
p = 0.44, ηp

2 = 0.02,
BF10 = 0.56

p = 0.03, ηp
2 = 0.18,

BF10 = 2.58

Correct rejection rate (%) 71.55 85.95 70.00 98.61 p < 0.01, ηp2 = 0.27,
BF10 = 14.17

p = 0.27, ηp2 = 0.06,
BF10 = 0.50

p = 0.51, ηp2 = 0.02,
BF10 = 0.40

Target- present response
time (s)

20.46 26.53 18.16 27.39 s p < 0.01, ηp2 = 0.38,
BF10 = 29.46

p = 0.83, ηp2 = 0.00,
BF10 = 0.39

p = 0.47, ηp2 = 0.03,
BF10 = 0.45

Trials where participants timed out were excluded for the hit rate and correct rejection analyses, trials where participants timed out or false alarmed were
excluded from the target-absent response time analysis, and trials where a participant missed a target, timed out, or false alarmed were excluded from the
target-present response time analysis

The above table provides the performance of the professional participants separated into radiology
residents and certified radiologists. For each measure, the statistics reported are from a 2 × 2 analysis of
variance (ANOVA) with search display as a within-subjects factor (2D, 3D) and profession as a between-
subjects factor (residents, certified radiologists). There were no differences between radiology residents and
certified radiologists across key measures. There was a significant interaction effect between display type
and profession for timeout rate; follow-up t-tests revealed no difference between the two groups on 2D trials
(t(26) = 1.59, p = 0.12) or 3D trials (t(26) = 0.22, p = 0.82).

Appendix 2
Additional measures of interest from Experiment 1 and Experiment 2

Table 3 Summary of results for the other measures from professionals and non-professionals for Experiment 1

Other measures Professionals Non-professionals Display type Profession Interaction

2D 3D 2D 3D

Timeout rate (%) 12.04 10.80 1.34 4.57 p = 0.54, ηp2 = 0.01,
BF10 = 0.25

p < 0.01, ηp2 = 0.13,
BF10 = 8.13

p = 0.17, ηp2 = 0.03,
BF10 = 0.68

Correct rejection rate (%) 73.53 91.79 72.69 97.31 p < 0.001, ηp2 = 0.40,
BF10 = 2.35 × 106

p = 0.57, ηp2 = 0.01,
BF10 = 0.30

p = 0.37, ηp2 = 0.02,
BF10 = 0.45

Target-Present RT 19.36 s 26.94 s 21.70s 30.35 s p < 0.001, ηp2 = 0.35,
BF10 = 3.83 × 103

p = 0.22, ηp2 = 0.03,
BF10 = 0.47

p = 0.75, ηp2 = 0.00,
BF10 = 0.29

The statistics reported are based off a 2 × 2 ANOVA comparing search performance on 2D and segmented-3D trials across professionals and non-professionals
from Experiment 1
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Timeout rate: On average, the timeout rate was 11.
42% for professionals (2D: 11.90%; 3D: 12.20%) and 2.
95% for non-professionals (2D: 1.34%; 3D: 4.57%).
There was a statistically significant main effect of pro-
fession (F(1,56) = 8.39, p = 0.005, ηp

2 = 0.13, BF10 = 8.13)
with a higher timeout rate for professionals compared to
non-professionals (see Appendix 2 Table 3). There was no
main effect of display type (F(1,56) = 0.39, p = 0.54, ηp

2 =
0.01, BF10 = 0.25) and no significant interaction effect
between display type and profession (F(1,56) = 1.95,
p = 0.17, ηp

2 = 0.03, BF10 = 0.68).
Correct rejection rate: On average, the correct rejection

rate was 79.60% for professionals (2D: 73.53%; 3D: 91.
79%) and 85.00% for non-professionals (2D: 72.69%; 3D:
97.31%). One professional did not contribute to the final
analysis as that individual timed out on all segmented-3D
trial. There was no significant main effect of profession
(F(1,55) = 0.33, p = 0.57, ηp

2 = 0.01, BF10 = 0.30), but there
was a statistically significant main effect of display type
(F(1,55) = 37.06, p < 0.001, ηp

2 = 0.40, BF10 = 2.35 × 106)
with a lower correct rejection rate for 2D search displays
compared to segmented-3D displays (see Appendix 2
Table 3). There was no significant interaction effect be-
tween display type and profession (F(1,55) = 0.81, p = 0.37,
ηp

2 = 0.02, BF10 = 0.45) (see Appendix 2 Table 4).
Target-present response times: On average, the target-

present response time was 23.15 s for professionals (2D:
19.36 s; 3D: 26.95 s) and 26.03 s for non-professionals (2D:
21.70s; 3D: 30.35 s). Four professionals and six non-
professionals did not contribute to the final analysis due to
a combination of missing a target, making a false alarm,
and/or having timed out on either all 2D or 3D trials.
There was a statistically significant difference between
display types (F(1,46) = 24.38, p < 0.001, ηp

2 = 0.35, BF10 =
3.83 × 103) with a shorter target-present response time for
2D displays compared to 3D displays (see Table 1). There
was no significant main effect of profession (F(1,46) = 1.54,
p = 0.22, ηp

2 = 0.03, BF10 = 0.47) and no significant
interaction between display type and profession (F(1,46) =
0.11, p = 0.75, ηp

2 = 0.002, BF10 = 0.29).

Non-professionals from Experiment 2 had an average
timeout rate of 1.01% (2D: 0.43%; 3D: 1.58%). There was
statistically significant difference between display types
(t(28) = 2.12, p < 0.05, BF10 = 1.36) with fewer timeouts
on 2D trials compared to 3D trials. They had an average
correct rejection rate of 77.00% (2D: 68.21%; 3D: 86.03%).
There was a statistically significant difference between
display types (t(28) = 5.72, p < 0.001, BF10 = 5.08 × 103)
with a lower correct rejection rate on 2D trials compared
to 3D trials. They had an average response time of 23.00s
(2D: 17.88 s; 3D: 25.37 s) on target-present trials. There
was a statistically significant difference between display
types (t(28) = 4.91, p < 0.001, 6.73 × 102) with a shorter
target-present response time on 2D trials compared to
3D trials.
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Table 4 Summary of results for the other measures for
non-professionals from Experiment 2

Other measures Experiment 2
Non-professionals

Display type
comparison

2D 3D

Timeout rate (%) 0.43 1.58 t(28) = 2.12, p = 0.04,
BF10 = 1.36

Correct rejection rate (%) 68.21 86.03 t(28) = 5.72, p < 0.001,
BF10 = 5.08 × 103

Target-present response
time (s)

17.88 25.37 t(28) = 4.91, p < 0.001,
BF10 = 6.73 × 102

The statistics reported are based on t-tests comparing search performance on
2D and segmented-3D displays. There was a higher timeout rate, a higher
correct rejection rate, and a longer average response time on target-present
trials for segmented-3D displays compared to 2D displays
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