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Abstract

Receiver operating characteristic (ROC) analysis was introduced to the field of eyewitness identification 5 years ago.
Since that time, it has been both influential and controversial, and the debate has raised an issue about measuring
discriminability that is rarely considered. The issue concerns the distinction between empirical discriminability
(measured by area under the ROC curve) vs. underlying/theoretical discriminability (measured by d’ or variants of it).
Under most circumstances, the two measures will agree about a difference between two conditions in terms of
discriminability. However, it is possible for them to disagree, and that fact can lead to confusion about which
condition actually yields higher discriminability. For example, if the two conditions have implications for real-world
practice (e.g., a comparison of competing lineup formats), should a policymaker rely on the area-under-the-curve
measure or the theory-based measure? Here, we illustrate the fact that a given empirical ROC yields as many
underlying discriminability measures as there are theories that one is willing to take seriously. No matter which
theory is correct, for practical purposes, the singular area-under-the-curve measure best identifies the diagnostically
superior procedure. For that reason, area under the ROC curve informs policy in a way that underlying theoretical
discriminability never can. At the same time, theoretical measures of discriminability are equally important, but for a
different reason. Without an adequate theoretical understanding of the relevant task, the field will be in no position to
enhance empirical discriminability.
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Significance Statement
In many fields, an important applied goal is to identify
diagnostic procedures that maximize discriminability
(e.g., that maximize the ability to discriminate between
patients who do vs. do not have a disease or to discrim-
inate between suspects who are vs. are not guilty). Re-
ceiver operating characteristic (ROC) analysis has long
been used in applied fields to measure discriminability,
but it was only recently introduced to the field of eyewit-
ness identification. Despite being introduced only 5 years
ago, ROC analysis was endorsed by a National Research
Council committee as an improvement over prior evalu-
ation practices, and ROC-based research has already had a
major influence on real-world policies concerning eyewit-
ness identification procedures. Nevertheless, it remains

controversial among eyewitness identification researchers,
and a central issue in the debate concerns the distinction
between theoretical and empirical discriminability. An un-
derstanding of that distinction is important for both theo-
reticians and policymakers because the two measures
need not agree. For theoreticians, theoretical discrimin-
ability (e.g., d') is the measure of interest, but for policy-
makers, empirical discriminability (e.g., area under the
ROC) is the measure of interest.

Introduction
Plotting the receiver operating characteristic (ROC) is a
graphical method of data analysis that has been used for
decades to measure discriminability, but what is discrim-
inability, exactly? A consideration of that question seems
appropriate in light of an on-going debate over the utility
of ROC analysis in one particular area of applied psych-
ology. Although widely used throughout experimental
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psychology and in many applied fields beyond psychology,
ROC analysis has been controversial – and also influential
– in the field of eyewitness identification (Lampinen,
2016; Levi, 2016; Rotello & Chen, 2016; Smith, Wells,
Lindsay & Penrod, 2017; Wells, Smith, & Smalarz,
2015; Wells, Smalarz, & Smith, 2015; Wixted & Mickes,
2015a, 2015b; Wixted, Mickes, Wetmore, Gronlund, &
Neuschatz, 2017). That recent controversy has brought
to the surface an important distinction that is the focus
of this article, namely, the distinction between theoret-
ical (i.e., “underlying”) discriminability and empirical
discriminability.
In experimental psychology, theoretical discriminabil-

ity typically refers to the degree to which unobservable
memory or perceptual signals from two classes of re-
peatedly presented stimuli – which we shall refer to as
target stimuli and foil stimuli – overlap in the brain of a
participant. If those two distributions overlap com-
pletely, then discriminability is equal to zero. The less
they overlap, the higher discriminability is said to be.
Theoretical discriminability is measured by a statistic
like d', which is the standardized distance between the
means of two underlying strength distributions that are
assumed to be Gaussian in form and to have equal vari-
ance. If a different model is assumed – even a slight
variant that merely assumes unequal variances – then a
different measure of discriminability would apply, such
as da (see Macmillan & Creelman, 2005). Despite their
differences, these alternative measures of theoretical dis-
criminability will ordinarily agree about which of two
conditions yields higher discriminability. However, that
will not always be the case, and the fact that d' and da
can disagree (e.g., see Dougal & Rotello, 2007) under-
scores the critical point that theoretical discriminability
exists in relation to the model used to quantify it.
Empirical discriminability is not the same as theore-

tical discriminability. In particular, empirical discrimin-
ability does not refer to the separation between two
unobservable distributions of memory or perceptual sig-
nals that occur in the brains of participants across target
and foil trials. Instead, empirical discriminability refers
to the degree to which participants correctly sort target
and foil stimuli into their true categories. If the target
and foil stimuli are both sorted into the “target” category
with the same probability (as would happen if respond-
ing were random), then empirical discriminability would
be equal to zero. The more the target stimuli are cor-
rectly placed into the target category and the foil stimuli
are correctly placed into the “foil” category, the higher
empirical discriminability is said to be. Empirical dis-
criminability is measured using a non-parametric statis-
tic known as area under the ROC curve (AUC). This
measure is purely geometric and relies on no theoretical
assumptions about the strengths of underlying memory

signals. Thus, in contrast to theoretical discriminability,
a non-parametric measure of empirical discriminability
remains unchanged even if a new model of underlying
discriminability is adopted.
In practice, just as different model-based measures of

theoretical discriminability usually agree about whether
discriminability is higher in Condition A compared to
Condition B, so too do theoretical and empirical measures
of discriminability usually agree about which condition is
diagnostically superior (Mickes, Moreland, Clark, &
Wixted, 2014; Rotello & Chen, 2016; Wixted et al., 2017).
However, they need not agree, and that fact lies at the
heart of the controversy over ROC analysis (Lampinen,
2016; Smith, Wells, Lindsay, & Penrod, 2017). In fact, as
illustrated later, an empirical AUC measure can indicate
that Condition A yields higher discriminability than Con-
dition B even when a theoretical d' measure of underlying
memory signals indicates the opposite.
What are the implications of the fact that theoretical

and empirical measures of discriminability are capable of
yielding conclusions that point in opposite directions?
Basic and applied researchers alike may find it instruct-
ive to consider this issue, especially as it relates to use-
inspired basic research. Such research is often focused
on testing theories that may have applied significance. In
such a study, which measure should be used if they hap-
pen to disagree about which of two conditions yields
higher discriminability, a model-based theoretical meas-
ure like d' or a model-free empirical measure like AUC?
Could both measures be right even when they reach op-
posite conclusions? And what would the policy implica-
tions be in a case like that?
Our claim is that both measures can, in fact, be right

even when they reach opposite conclusions. They can
both be right because they measure different aspects of
memory. One measures the degree to which latent
memory signals theoretically overlap in the brains of
participants; the other measures the degree to which
participants can use their memory to empirically sort in-
nocent and guilty suspects into their true categories.
Critically, when testing theoretical models, a theoretical
measure of discriminability takes precedence, but when
deriving real-world policy implications from the results,
the empirical AUC measure of discriminability takes
precedence. That is the main take-home message of this
article. We consider this issue in relation to the empir-
ical evaluation of competing lineup procedures (namely,
simultaneous vs. sequential lineups) because it is ground
zero of the recent controversy over the use of ROC ana-
lysis in the field of eyewitness identification. However, as
we explain in more detail later, the same point applies to
any discrimination procedure that has applied implica-
tions. Whether the policy decision involves eyewitness
memory, medical diagnosis, or lie detection (to name a
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few applied fields), empirical discriminability takes
precedence over theoretical discriminability.

The basic signal detection framework for
eyewitness identification procedures
In the course of a criminal investigation, the police will
often identify a suspect – one who may or may not be
guilty – and then rely on an eyewitness to help them de-
termine if they have the right person. To do so, the po-
lice present the eyewitness with a recognition memory
test. The police would like to use a recognition proced-
ure that maximizes the chances that a guilty suspect will
be identified (i.e., that maximizes the hit rate, HR) while
minimizing the chances that an innocent suspect will be
misidentified (i.e., while minimizing the false alarm rate,
or FAR). In other words, the police face a signal detec-
tion problem, which is an issue that experimental psy-
chologists literally wrote a book about (Green & Swets,
1966). Only recently, however, has signal detection the-
ory been brought to bear on this issue.

One common eyewitness identification procedure is
known as a showup, which is illustrated in the left panel
of Fig. 1. In a showup, the eyewitness is presented with
only one individual, who is either innocent or guilty.
Usually, a police showup involves a live individual (not a
photo) because it is used when a suspect is apprehended
in the minutes following a crime and is then brought to
the eyewitness to determine if that suspect is the perpet-
rator. Because a showup involves a single individual, it
corresponds to what is commonly referred to as an old/
new recognition memory task.
Another commonly used eyewitness identification task

is a lineup, which is illustrated in the right panel of Fig. 1.
In the US, the police test eyewitness memory with lineups
hundreds of thousands of times every year. Live lineups
were once the norm, but nowadays, the police almost
always administer photo lineups after they identify a
suspect in the days or weeks following a crime. A photo
lineup consists of a picture of one suspect (the person
who the police believe may have committed the crime)
plus several additional photos of physically similar foils

Fig. 1 An illustration of two common eyewitness identification procedures. The left panel illustrates a showup in which the recognition memory
test consists of a single photo – either the guilty suspect (the target) or an innocent suspect (the foil) – presented for a yes/no decision. The right
panel illustrates a simultaneous lineup in which the recognition memory test consists of the presentation of a target-present array containing one
guilty suspect (the target) and five fillers (foils) or a target-absent array containing one innocent suspect and five fillers (all foils). Suspect faces
and filler faces from the Chicago Face database (Ma, Correll, & Wittenbrink, 2015)
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(i.e., fillers) who are known to be innocent. As illus-
trated in the right panel of Fig. 1, a target-present
lineup includes the perpetrator along with (usually five)
similar-appearing foils; a target-absent lineup is the
same except that the perpetrator is replaced by an in-
nocent suspect. The police do not know if they have
constructed a target-present or a target-absent lineup,
but if the eyewitness picks the suspect (innocent or
guilty) it increases their confidence that they have
found the perpetrator.
A signal detection interpretation of showup perform-

ance is straightforward (Fig. 2). According to this model,
the memory match signals generated by targets (guilty
suspects) and foils (innocent suspects) are distributed
according to Gaussian distributions with means of μTarget
and μFoil, respectively, and standard deviations of σTarget
and σFoil, respectively. The model depicted in Fig. 2 is an
equal-variance model such that σTarget = σFoil, though
one need not make that assumption. The target mean is
higher than the foil mean because the target actually
does correspond to the eyewitness’s memory of the per-
petrator. The memory signals for both targets and foils
vary from suspect to suspect because some guilty sus-
pects (targets) are encoded better than others, and some
innocent suspects (foils) will happen to coincidentally
match the memory of target better than others. The dif-
ference between the target and foil means in terms of
their common standard deviation is the main signal-
detection-based measure of discriminability, d'.

Unless d' is very large, the two distributions overlap to
some degree, which means that no signal strength per-
fectly distinguishes targets from foils. Thus, a decision cri-
terion must be set such that any memory signal that
exceeds it yields a positive identification (ID), whereas any
memory signal that falls below it results in a non-
identification (No ID). The HR corresponds to the propor-
tion of the target distribution that exceeds the decision
criterion, and the FAR corresponds to the proportion of
the foil distribution that exceeds the decision criterion.
Confidence in an ID corresponds to the highest confi-

dence criterion exceeded by the memory strength associ-
ated with a given face, whether it is a target or a foil.
The model shown in Fig. 2 assumes that a 5-point confi-
dence scale was used for an ID (1 = low confidence ➔ 5
= high confidence), and each confidence rating is associ-
ated with its own decision criterion. For example, a face
that generates a memory signal that falls to the extreme
right of the horizontal memory-strength axis will not
only be identified but will be identified with high confi-
dence. That is, because the memory signal falls above c5,
the ID will be given a rating of 5 on the 5-point confi-
dence scale.
The model shown in Fig. 2 applies directly to a recog-

nition test in which the eyewitness is presented with a
single test face, either a target (guilty suspect) or a foil
(innocent suspect). The same basic model applies to a
lineup, but the way it works is somewhat different. Ba-
sically, a six-item target-present lineup is conceptualized
as five random draws from the foil distribution and one
random draw from the target distribution; a six-item
target-absent lineup is conceptualized as six random
draws from the foil distribution (all statistically inde-
pendent of each other in the simplest case). Note that
the memory strength of the innocent suspect is repre-
sented by one of the values drawn from the foil distribu-
tion because, if the lineup is constructed in such a way
that the innocent suspect does not stand out (i.e., if the
lineup is fair), the innocent suspect is, from the point of
view of the witness, just another individual who fits the
description of the perpetrator but who did not actually
commit the crime (i.e., the innocent suspect is just an-
other foil).
Because multiple faces are involved on a given lineup

test, more than one face may exceed the decision criter-
ion. How does the witness decide whether or not to
make an ID? The simplest decision strategy on both
target-present and target-absent trials would be for the
witness to first determine the photo that generates the
strongest (MAX) signal and to then identify that person
(who is either the suspect or a foil) if the signal exceeds
a decision criterion. That person would be identified
even if one or more of the other faces in the lineup also
generate a memory signal that exceeds the decision

Fig. 2 Equal-variance Gaussian signal detection model for a showup
or a lineup. For a showup, the model operates in the same way that
it does for a standard old/new recognition memory test. For a lineup,
the simplest decision rule holds that a positive identification (ID) is
made if the memory-strength of the strongest item in the array
(considered in isolation) exceeds criterion, c1. In that case, the
confidence rating associated with the ID depends on the highest
confidence criterion that is exceeded (e.g., the confidence rating is
5 if the strength of the most familiar face exceeds c5)
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criterion. If no face in the lineup generates a memory
signal that exceeds the criterion, the lineup would be
rejected (i.e., no ID would be made).
Although experimental psychologists have conceptual-

ized and analyzed basic list memory performance in
terms of signal detection theory for decades, for many
years, lineup performance was analyzed without any
guidance from that theory. We next review how lineup
performance was originally analyzed and then consider
how the basic model illustrated in Fig. 2 points to a bet-
ter method of analysis, namely, ROC analysis. However,
it is important to emphasize at the outset that ROC ana-
lysis is not inherently dependent on any theoretical con-
sideration, including signal detection theory. A model
like the one depicted in Fig. 2 guides thinking about why
ROC analysis is important, but once that point is appre-
ciated, ROC data can be collected and analyzed in a
purely empirical way (i.e., without embracing any theor-
etical assumptions). A purely empirical ROC-based ana-
lysis of discriminability is what provides policymakers
with the information they need to determine which eye-
witness identification procedure is superior to another.
After presenting that case, we go on to argue that, for
theoretical purposes, ROC data from lineups can also be
productively analyzed in a theory-dependent way using
signal detection models like the one shown in Fig. 2.

Simultaneous vs. sequential lineups
As noted above, a simultaneous photo lineup involves
the simultaneous presentation of all of the faces in the
lineup (Fig. 1). In a sequential lineup, the photos are in-
stead presented one at a time. In most experimental
studies of the sequential lineup, a stopping rule is used
such that the first photo that elicits a “yes” response ter-
minates the procedure. A considerable body of research
has been interpreted to mean that sequential lineups, de-
veloped by Lindsay and Wells (1985), are diagnostically
superior to simultaneous lineups (e.g., Steblay, Dysart, &
Wells, 2011). Moreover, in terms of real-world impact,
this line of research ranks among the most influential in
all of experimental psychology. For example, a survey
conducted in 2013 revealed that of more than 15,000
law enforcement agencies in the US, 30% had changed
their policies and retrained their officers to administer
the photo in a lineup sequentially instead of, or as an al-
ternative option to, administering them simultaneously
(Police Executive Research Forum, 2013).
The idea that sequential lineups might be superior to

simultaneous lineups is based primarily on the results of
mock-crime laboratory experiments conducted over the
last 30 years. In a typical mock-crime experiment, partic-
ipants witness a staged crime (e.g., by watching a video
of someone snatching a purse) and are later shown a
lineup in which the perpetrator is either present or

absent, as illustrated in the right panel of Fig. 1. The job
of the witness is to indicate whether the perpetrator (i.e.,
the “target”) is present in the photo array and, if so, to
specify the target’s photo. On target-present trials, the
witness can correctly identify the target, incorrectly
identify a filler (i.e., a “foil”), or incorrectly reject the
array. On target-absent trials, the witness can incorrectly
identify the innocent suspect, incorrectly identify a filler,
or correctly reject the array. This general experimental
design has also been applied to certain visual search
tasks (Cameron, Tai, Eckstein, & Carrasco, 2004; Michel
& Geisler, 2011; Shaw, 1980; Swensson & Judy, 1981)
and to some radiologic assessment tasks (Starr, Metz,
Lusted, & Goodenough, 1975; Swensson, 1996).
Although a lineup is a somewhat complex recognition

memory procedure compared to a showup, the relevant
measure of accuracy is still based on some combination
of the HR and the FAR. However, computing these mea-
sures for a lineup is not as straightforward as it is for the
showup. For a lineup, the HR is the proportion of
target-present lineups that resulted in a correct ID of the
guilty suspect. For example, if 70% of target-present
lineups resulted in a correct ID of the guilty suspect,
20% resulted in an incorrect ID of a filler, and 10% re-
sulted in no ID, the HR would be .70. The FAR is the
proportion of target-absent lineups that resulted in an
incorrect ID of the innocent suspect. For example, if 6%
of target-absent lineups resulted in an incorrect ID of
the innocent suspect, 30% resulted in an incorrect ID of
a filler, and 64% resulted in no ID, the FAR would be
.06. The FAR is .06 and not .36 (.06 + .30) because, even
though the 30% of misidentified fillers are “errors” in the
context of a psychology experiment, in the context of a
police lineup, they would never lead to a false conviction
because the police know that the fillers are not guilty.
Thus, filler IDs are relatively inconsequential errors and
are, therefore, treated separately. To determine which
lineup procedure is superior in an applied sense, the
focus has always been placed on consequential suspect
IDs (i.e., on the HR and FAR).
The original argument in favor of the sequential lineup

procedure comes from combining the correct and incor-
rect suspect ID rates into a ratio known as the diagnosti-
city ratio (DR). More specifically, DR = HR/FAR. The
DR is what is usually thought of as the likelihood ratio
in the odds version of Bayes’ theorem, according to
which the posterior odds of guilt are equal to the prior
odds of guilt multiplied by the likelihood ratio. More
formally, Bayes’ theorem compares the odds in favor of
one hypothesis over another. The two hypotheses of
interest here are:

H1: the suspect is guilty
H2: the suspect is innocent
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Bayes’ theorem states that:

P H1jDð Þ
P H2jDð Þ ¼

P DjH1ð Þ
P DjH2ð Þ

P H1ð Þ
P H2ð Þ ;

where D is the data (a suspect ID in this case), P(H1|D)/
P(H2|D) represents the posterior odds of H1 compared
to H2 (i.e., the odds of guilt after a suspect ID has been
made), P(D|H1)/P(D|H2) represents the likelihood ratio
(i.e., the diagnosticity ratio) and P(H1)/P(H2) represents
the prior odds of H1 compared to H2 (i.e., the odds of
guilt before a suspect ID has been made).
In the lineup scenario, P(D|H1) is the HR (i.e., the cor-

rect ID rate) and P(D|H2) is the FAR (i.e., the false ID
rate). Thus, the DR (i.e., the likelihood ratio) is equal to
the correct ID rate divided by the false ID rate (HR/
FAR). In most experiments, half the participants are pre-
sented with a target-present lineup and half are pre-
sented with a target-absent lineup, which means that the
base rate of guilt equals the base rate of innocence.
Under such conditions, the prior odds of guilt, P(H1)/
P(H2), equal 1, in which case the DR directly indicates
the posterior odds of guilt. For example, if the prior odds
are equal to 1, and if the HR = .50 and the FAR = .10,
the resulting DR of 5 would mean that a suspect identi-
fied using this procedure is five times as likely to be
guilty as innocent. Note that this measure is computed
only from witnesses who identify a suspect (i.e., wit-
nesses who pick a filler or make no ID are not involved
in the calculation). This makes sense because the ques-
tion of primary interest concerns how to interpret the
outcome that imperils a lineup member. Filler IDs do
not (because, as noted earlier, fillers are known to be in-
nocent) and neither do no IDs, but suspect IDs do,
whether the identified suspect is innocent or guilty.
The posterior odds of guilt can, of course, also be

computed for the other two outcomes, namely, filler IDs
and lineup rejections (Wells, Yang, & Smalarz, 2015).
For example, if the prior odds of guilt are even (i.e., half
target-present lineups, half target-absent lineups), one
can ask about the posterior odds of guilt for the subset
of lineups that resulted in a filler ID or No ID. Given ei-
ther of those outcomes, laboratory studies suggest that
the posterior odds of guilt are slightly less than even
(Wells, Smalarz, et al., 2015, Wells, Smith, et al., 2015,
Wells, Yang, et al., 2015), which means that filler IDs
and lineup rejections are slightly probative of innocence.
However, our focus here, like most of the focus in the
prior academic literature, is on the far more consequen-
tial outcome, suspect IDs (and the corresponding mea-
sures, namely, the HR and the FAR). In other words, our
main focus is on the measures that once led the field to
conclude that sequential lineups are diagnostically su-
perior to simultaneous lineups.

In the seminal study on this issue, Lindsay and Wells
(1985) reported that for the sequential lineup, HR = .50
and FAR = .17 (DRSEQ = .50/.17 = 2.94), whereas for the
simultaneous lineup, HR = .57 and FAR = .42 (DRSIM =
.57/.42 = 1.36). It seems fair to say that, to many, the
large reduction in the FAR is what makes the sequential
procedure so attractive. However, upon reflection, it be-
comes clear that one must consider the effect on the HR
as well. At first, the relatively small decrease in the HR
associated with switching to the sequential procedure
seems reassuring. However, because this “hand waving”
analysis of the effect of sequential lineups on the HR
and FAR is clearly insufficient, a quantitative assessment
of some kind is needed. The DR provides one way to
quantify the effects of interest.
The DR is related to positive predictive value (PPV),

which is the probability that a suspect who has been
identified is actually guilty. The equation relating these
two measures is as follows:

PPV ¼
DR

P H1ð Þ
P H2ð Þ

� �

DR
P H1ð Þ
P H2ð Þ þ 1

� � ;

where, again, DR = P(D|H1)/P(D|H2) and P(H1)/P(H2)
represents the prior odds of guilt. For the typical equal
base-rate situation, where P(H1)/P(H2) = 1, this equation
reduces to PPV = DR/(DR + 1). Thus, for the Lindsay
and Wells (1985) study, PPVSEQ = 2.94/(2.94 + 1) = .746
and PPVSIM = 1.36/(1.36 + 1) = .576. In other words, the
probability that a suspect identified from a sequential
procedure is guilty is .746, whereas the probability that a
suspect identified from a simultaneous procedure is
guilty is .576. These PPV values are not very impressive
for either procedure, but the task used by Lindsay and
Wells (1985) involved an innocent suspect who closely
resembled the perpetrator (i.e., it was designed to be a
hard task). In the most recent meta-analysis of the aca-
demic literature, Steblay et al. (2011) argued that this
pattern is fairly typical of studies conducted since 1985
even when overall performance is better. That pattern
(DRSEQ > DRSIM) is what is meant by a “sequential su-
periority effect.”

Empirical discriminability
Although the DR is a purely empirical (i.e., non-
theoretical) measure in that it appeals to no model of la-
tent memory strengths, it does not measure empirical
discriminability, which refers to the degree to which in-
nocent and guilty suspects are correctly sorted into their
true categories. More specifically, an empirical measure
of discriminability quantifies the degree to which inno-
cent suspects are correctly sorted into the “innocent”
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category while, at the same time, guilty suspects are cor-
rectly sorted into the “guilty” category. In this section we
explain why the DR does not unambiguously identify the
diagnostically superior procedure and why a non-
theoretical empirical measure of discriminability instead
provides the needed information to inform policy deci-
sions. We use a signal detection model like the one
shown in Fig. 2 to guide thinking about this issue, but,
again, at this stage, it is no more than a conceptual
guide. The empirical ROC analysis we describe is not
dependent on any of the assumptions of that model.
Later, we present a theoretical analysis of underlying dis-
criminability that is dependent on those assumptions.
Like the DR, a measure of true empirical discrimin-

ability also makes use of the HR and FAR computed
from IDs made to suspects in the lineup. Again, it often
seems insufficient to assess the diagnostic accuracy of a
lineup using a measure that includes only the HR and
the FAR, which leaves out any consideration of filler IDs
from target-present and target-absent lineups. However,
unlike a filler, an innocent suspect is not known to be
innocent and will be imperiled (and perhaps wrongfully
convicted) if mistakenly identified. For that reason, a
reasonable goal for the police is to maximize the HR
while simultaneously minimizing the FAR (values that
are computed using only suspect IDs), regardless of the
rate of filler IDs. For example, if Procedure A yielded a
HR of .80 and a FAR of .05, whereas Procedure B yielded
a HR of .60 and a FAR of .20, it would be difficult to de-
fend the argument that the police should use Procedure
B based on some consideration having to do with the
rate of filler IDs vs. no IDs for the two procedures. In-
stead, Procedure A would clearly be the one to use no
matter what the filler ID rate and no ID rate happened
to be for either procedure. Moreover, no model of mem-
ory would be needed to reinforce the decision as to
which of the two procedures is diagnostically superior.
On their own, the empirical data would make it crystal
clear which procedure is diagnostically superior.
The example presented above involved an easy choice

because Procedure A yielded both a higher HR and a
lower FAR than Procedure B. However, the issue be-
comes more complicated when the HR and FAR are
both higher for one procedure than the other. For ex-
ample, which procedure would be diagnostically superior
if Procedure A yielded a HR of .80 and a FAR of .05,
whereas Procedure B yielded a HR of .60 and a FAR of
.02? The DR for Procedure B (.60/.02 = 30) is higher
than that for Procedure A (.80/.05 = 16), so by that
measure Procedure B would be preferred. However, this
outcome would not actually identify Procedure B as be-
ing diagnostically superior. Why not? In brief, the reason
is that it would be easy to selectively induce more con-
servative responding for Procedure A (e.g., using

instructions that encourage a high degree of certainty
before making an ID from the lineup), thereby lowering
both the HR and the FAR for that procedure. Imagine
that when conservative responding was encouraged for
Procedure A, the HR dropped from .80 to .65 (still
higher than Procedure B, with a HR of .60) and the FAR
dropped from .05 to .02 (now equal to Procedure B).
Under these conditions, Procedure A would clearly be
the diagnostically superior procedure. Instead of switch-
ing from Procedure A to Procedure B to achieve a FAR
as low as .02, it would make more sense to stick with
Procedure A and to induce more conservative respond-
ing. In essence, that kind of comparison is what ROC
analysis is all about, and it illustrates why ROC analysis
is needed to unambiguously determine the diagnostically
superior procedure.

ROC analysis
ROC analysis begins with measuring an entire family of
hit and false alarm rates for each diagnostic procedure,
and there is more than one way to do so. For example,
as mentioned above, different instructions can be used
to manipulate response bias across different conditions
(e.g., liberal, neutral and conservative). In the liberal re-
sponse bias condition, the instructions would actively
encourage participants to make an ID from the lineup,
resulting in relatively high hit and false alarm rates, as il-
lustrated in Fig. 3. Conceptualized in terms of signal de-
tection theory, a liberal placement of the decision
criterion results in a large proportion of the target distri-
bution and a large proportion of the foil distribution ex-
ceeding it. In the conservative response bias condition,
the instructions would discourage participants from
making an ID unless a participant is quite certain of be-
ing correct (i.e., the decision criterion in Fig. 3 moves to
the far right). These instructions would result in

Fig. 3 An equal-variance Gaussian signal detection model illustrating
the placement of three different decision criteria (liberal, neutral
and conservative)
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relatively low hit and false alarm rates. In a neutral re-
sponse bias condition, the instructions would neither en-
courage nor discourage participants from making an ID,
resulting in intermediate hit and false alarm rates. When
the hit and false alarm rates from the different biasing
conditions are plotted against each other on a graph
(HRs on the y-axis, false alarm rates on the x-axis), they
make up the instruction-based ROC.
A more common and arguably better method of gen-

erating ROC data – and the method that we will focus
on here – makes use of confidence ratings that partici-
pants provide when they make an ID from a lineup. The
confidence ratings themselves provide the multiple deci-
sion criteria needed to construct an ROC, as illustrated
earlier in Fig. 2. Thus, only a single condition is needed
in this case, one in which neutral response bias instruc-
tions would be used. A common neutral instruction uses
words to this effect: “the perpetrator may or may not be
in the lineup, and it is just as important to exonerate an
innocent suspect as it is to identify the guilty suspect.”
The first point on the confidence-based ROC is obtained
by computing the HR and FAR in the usual way, namely,
by counting all suspect IDs from target-present and
target-absent lineups regardless of the confidence
expressed by the participant. In terms of the model
shown in Fig. 2, a suspect ID would be counted when-
ever the suspect generated the MAX signal in the lineup
and the signal exceeded c1. This (most liberal) ROC
point is associated with the highest HR and FAR for a
given condition, and these are the values that have long
been used to compute the DR (HR/FAR).
Additional (more conservative and, therefore, lower)

hit and false alarm rates are computed by setting an
ever-higher standard on the confidence scale for count-
ing IDs. Thus, for example, the second ROC point is ob-
tained by counting all suspect IDs except those that were
made with the lowest level of confidence (i.e., by treating
as a non-ID any suspect ID that is acknowledged by the
participant to be little more than a guess). In terms of
the model shown in Fig. 2, a suspect ID would be
counted whenever the suspect generated the MAX sig-
nal in the lineup and the signal exceeded c2. The last
ROC point is computed by counting only suspect IDs
that were made with the highest level of confidence (i.e.,
for suspects with a MAX signal exceeding c5). This
(most conservative) ROC point is associated with the
lowest correct and false ID rates for a given condition.
Mickes et al. (2017) recently compared the instruction-
based and confidence-based methods of generating ROC
data for lineups and found that they yielded similar
(though not identical) curves.
The reason why it is arguably better to use neutral in-

structions plus confidence ratings to collect ROC data is
that it allows a different decision criterion to be used at

different stages of an investigation. Early in an investiga-
tion, it would make sense to use a relatively liberal cri-
terion. If the witness identifies the suspect with low
confidence, for example, the police may wish to further
investigate that individual (e.g., by using that low-
confidence ID to support a request for a search warrant
from a judge). At a later stage of the investigation, how-
ever, it would make sense to set a much higher standard
before indicting the identified suspect if that indictment
is going to be based largely on the eyewitness identifica-
tion evidence. If, instead of using confidence ratings, in-
structions were used to induce conservative responding
from the outset such that only IDs made with high con-
fidence were obtained in the first place, the police would
lose the potentially useful investigatory information that
a suspect ID made with low or medium confidence
might provide.

A hypothetical example
Table 1 presents hypothetical data that might be ob-
served on a lineup task where confidence ratings were
taken using a 5-point confidence scale. These hypothet-
ical data might be from an individual observer, or they
might reflect data aggregated across many observers,
with the latter usually being true of eyewitness identifi-
cation research in which each participant is usually
tested only once (as is usually true of real eyewitnesses).
For these hypothetical lineup data, confidence ratings
were not collected when the photo array was rejected
(No ID). This is typical of lineup experiments in which
participants are asked how certain they are that the most
familiar person in the lineup is the perpetrator when
that person is identified, but they are not asked how cer-
tain they are that the most familiar person in the lineup
is not the perpetrator when no one is identified. Often,
they are asked to make a global confidence rating in a
non-ID (e.g., “I am 80% certain that the perpetrator is
not in the lineup”), but this approach does not provide
enough information to compute additional hit and false
alarm rates (i.e., additional ROC points) beyond those
computed from positive IDs. To compute additional
ROC points from non-IDs, the confidence rating would

Table 1 Hypothetical frequency counts of target positive
identifications (IDs), foil IDs and No IDs by level of confidence
for target-present and target-absent lineups

Confidence Target-present Target-absent

Target Foil No ID Foil No ID

1 34 30 191 57 330

2 33 24 41

3 30 17 27

4 36 16 23

5 74 17 22
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need to be specifically applied to the face that the wit-
ness believes is most likely to be the perpetrator (e.g.,
“Face #3 is most likely to be the perpetrator, but I am
80% certain that he is not the one”). To date, confidence
ratings have not been collected in that manner.
The data in Table 1 allow one to compute not only the

overall HR and FAR but also a HR and FAR separately
for varying degrees of response bias specified by the dif-
ferent confidence ratings. Those data constitute the
ROC for a given lineup procedure. Figure 4 presents the
ROC data computed from the values shown in Table 1.
The HR for each level of confidence is computed by
counting the number of correct (i.e., target) IDs made
from target-present lineups with that level of confidence
or a higher level of confidence, divided by the total num-
ber of target-present lineups. The false alarm rate for
each level of confidence is computed by counting the
number of foil IDs made from target-absent lineups with
that level of confidence or a higher level of confidence,
divided by the total number of target-absent lineups and
divided again by lineup size (6). Only one of the foils fills
the role of the innocent suspect, which is why the value
is divided by lineup size. Doing so yields an estimate of
the false suspect ID rate (i.e., the FAR). Essentially the
same estimate would be obtained if one of the foils had
been pre-designated to serve as the innocent suspect (as

in Fig. 1) and then only IDs to that face were counted as
false alarms.

Measuring the area under the ROC curve
To estimate empirical discriminability (i.e., to measure
the ability of participants to correctly sort innocent and
guilty suspects into their true categories), an area under
the curve measure is computed. As noted above, lineup
ROCs are usually based only on positive IDs (positive
Target IDs from target-present lineups and positive foil
IDs from target-absent lineups), which yields a trun-
cated, partial ROC compared to the ROCs obtained
from non-lineup tasks. In non-lineup tasks, the FAR typ-
ically ranges from 0 to 1, but in a fair lineup ROC, it
only ranges from 0 to 1/6 (.167). That is the maximum
possible FAR because even if every witness presented
with a fair target-absent lineup identified someone (i.e.,
if responding were maximally liberal such that a “yes”
response were made to every target-absent lineup), wit-
nesses would land on the innocent suspect by chance
only 1/6 of the time and would land on a filler the other
5/6 of the time. In actual practice, the obtained FAR is
typically much less than .167 (as it is in Fig. 4) because,
typically, responding is not maximally liberal.
A similar (but not identical) story applies to the HR.

In non-lineup tasks, the HR typically ranges from 0 to 1.
However, in a fair lineup ROC, it usually ranges from 0
to a value less than 1, such as .80. The reason is that
even if every participant presented with a target-present
lineup identified someone (i.e., if responding were max-
imally liberal), it is unlikely that everyone would success-
fully recognize the guilty suspect because it is unlikely
that everyone formed a clear memory of the perpetrator
at study. Therefore, under typical imperfect memory
conditions, some participants would land on a target-
present filler, in which case the maximum HR would be
less than 1. The HR will reach 1.0 only when every par-
ticipant forms a clear enough memory of the perpetrator
to identify that individual from a target-present lineup.
Because the FAR for a lineup is limited to a range that

is less than 0 to 1, the relevant measure of empirical dis-
criminability for a lineup is the partial area under the
curve (pAUC). The partial area under the curve is com-
puted from a false alarm rate of 0 up to some maximum
that is less than or equal to .167.1 That maximum FAR
is denoted here as FARmax. An obvious choice for
FARmax is the FAR associated with the overall hit and
false alarm rate that corresponds to the rightmost ROC
point (.413 and .057, respectively, in Fig. 4). With
FARmax = .057, as it is in Fig. 4, pAUC for these data
(i.e., the area of the shaded region) is approximately
.017. An intuitive appreciation of why the value is ap-
proximately .017 can be obtained by considering the
rectangle formed by the FAR and HR, with the short

Fig. 4 Hypothetical receiver operating characteristics (ROC) curve for
a lineup procedure in which a 5-point confidence scale was used.
The number above each point is the diagnosticity ratio for that correct
and false positive identification (ID) rate pair. The region shaded in
light gray represents the partial area under the ROC curve (pAUC)
for the specified false ID rate range of 0 to FARmax, which is equal
to .057 in this case. The diagonal line represents chance performance
(where correct ID rate = false ID rate)
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side of the rectangle defined by the FAR range from 0 to
.057 and the long side defined by the HR range from 0
to .413. The area of that rectangle is equal to .057 × .413
= .024. The shaded area is a bit more than half of the
area of that rectangle and is, therefore, equal to approxi-
mately .017.
This empirical measure of discriminability is not based

on any theoretical assumptions about memory. In fact,
no part of the ROC analysis presented thus far depends
on any theoretical assumptions about underlying (latent)
memory strengths. First, the hit and false alarm rates
comprising the ROC were computed directly from the
data (consisting of confidence-based frequency counts)
and then plotted against each other. Next, the points
were connected by straight lines. Finally, the area be-
neath the curve was estimated from a FAR of 0 to
FARmax. Computer software is needed to precisely meas-
ure the size of the shaded area, and the tutorial videos
associated with Gronlund, Wixted, and Mickes (2014)
explain how to use one such R program, called pROC
(Robin et al., 2011), to do that. The key point is that the
program does not make any theoretical assumptions
about latent memory strength signals to estimate the
partial area under the curve (pAUC). Instead, it mea-
sures the shaded area in Fig. 4 atheoretically.
What does the pAUC measure actually tell you? On

its own, not very much. However, the usual goal is to
compare the pAUC values for two different lineup pro-
cedures. That comparative analysis is extremely inform-
ative because the procedure that yields the higher
pAUC is the diagnostically superior procedure. A prac-
tical consideration that arises in such an analysis is that
the two procedures will not typically yield the same
maximum FAR (i.e., the FARs with their respective
rightmost ROC points). To compare the two proce-
dures with respect to pAUC, it is essential to use the
same FARmax to measure the area under both curves.
Which FAR – the one associated with the less conser-
vative procedure or the one associated with the more
conservative procedure – should determine the FARmax

used to compute pAUC for both procedures? To avoid
any theoretical extrapolation of the ROC curve, it
makes sense to set FARmax equal to the FAR associated
with the rightmost point of the more conservative of
the two procedures being compared, as illustrated using
hypothetical data in Fig. 5. Such an analysis covers a
range that includes empirical ROC data generated by
both procedures and, therefore, does not involve theor-
etically extrapolating the ROC curve to the right for ei-
ther procedure.
A stickler might contend that a minimum FAR greater

than 0 should also be specified, one that is equal to the
FAR associated with the leftmost ROC point from the
condition with the larger minimum FAR (e.g., FARmin

would be set to the FAR associated with the leftmost
ROC point for the simultaneous procedure in Fig. 5).
This approach would avoid extrapolating the ROC curve
to the origin (0,0). However, in practice, FARmin is usu-
ally set to 0 because no specific theory is relied upon to
justify the seemingly safe assumption that if responding
were infinitely conservative, both the HR and the FAR
would be 0.
Once the minimum and maximum FAR values are

specified, the pAUC measure for each procedure is fixed
and will not vary as a function of which theoretical
model of memory strengths is assumed to be true. In
that sense, pAUC is a purely empirical measure of dis-
criminability. In Fig. 5, it is visually obvious that pAUC
for the simultaneous procedure is greater than the
pAUC for the sequential procedure over the FAR range
of 0 to .038 (the maximum FAR for the sequential pro-
cedure). This is true even though, as ordinarily com-
puted, the DR for the sequential procedure (8.0) is larger
than the DR for the simultaneous procedure (7.3). The
pROC software uses a bootstrap procedure to determine

Fig. 5 Hypothetical receiver operating characteristic (ROC) curves for
two eyewitness identification procedures in which a 5-point confidence
scale was used. The rightmost ROC point again represents the overall
correct and false positive identification (ID) rates that are ordinarily used
to compute the diagnosticity ratio. Note that the diagnosticity ratio for
the rightmost point is higher for the sequential procedure, a result that,
in the past, would have been interpreted to mean that the sequential
procedure is diagnostically superior to the simultaneous procedure. The
region shaded dark gray represents the partial area under the curve
(pAUC) for the sequential procedure in the specified false ID rate range
of 0 to FARmax. That dark gray region plus the light gray region above it
represents the pAUC for the simultaneous procedure over the same
false ID rate range. The dashed line represents the line of
chance performance
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if the apparent difference in the two pAUC values is sta-
tistically significant.
Assume that the difference is significant. What would

it mean that pAUCSIM > pAUCSEQ? This is the key ques-
tion. It would mean that for any point on the lower (se-
quential) ROC that might be preferred, there is a point
that can be generated by the other (simultaneous) pro-
cedure that has the same FAR and a higher HR. Imagine,
for example, that policymakers were satisfied with the
FAR associated with the rightmost point on the sequen-
tial ROC (.038). It is visually apparent that the simultan-
eous procedure can achieve that same FAR but with a
higher HR. For a FAR of .038, the HR for the sequential
procedure is .304, but the HR for the simultaneous pro-
cedure is .346. Moving slightly to the left on the simul-
taneous ROC would yield a HR that still exceeds .304
and that has a FAR of less than .038. Thus, the fact that
that pAUCSIM > pAUCSEQ means that the simultaneous
procedure can achieve both a higher HR and a lower
FAR than the sequential procedure, at least in the FAR
range of 0 to .038. No theoretical considerations are
needed to appreciate the fact that results like these
would establish that the simultaneous procedure is diag-
nostically superior to the sequential procedure in that
FAR range.2

Then again, this analysis would not conclusively estab-
lish that the simultaneous procedure is necessarily su-
perior outside of the tested FAR range (i.e., outside of 0
to FARmax). For some policymakers, the ideal FAR might
fall outside of the tested range. For a given procedure,
the ideal point on the ROC is, in part, a function of the
subjective values associated with hits, false alarms, cor-
rect rejections, and misses (see Equation 1.14 in Green
& Swets, 1966, p. 22). Because subjective values are in-
volved, science cannot conclusively specify the point on
the ROC that yields the highest utility. Science can con-
clusively specify the procedure that yields the highest
ROC, but choosing the appropriate tradeoff between hits
and false alarms on a given ROC is a matter for policy-
makers to decide. If, for some reason, policymakers pre-
ferred a FAR of approximately .06 because of the higher
HR that could be achieved, the fact that pAUCSIM >
pAUCSEQ over the tested FAR range (0 to FARmax =
.038) would not necessarily indicate that the simultan-
eous procedure is superior in a higher FAR range.
To find out if pAUCSIM > pAUCSEQ over a higher FAR

range, one could use instructions to induce more liberal
responding for the sequential procedure so that its max-
imum FAR also approaches .06. Alternatively, as noted
earlier, confidence in No IDs could be collected in such
a way as to allow one to project the ROC further to the
right (i.e., by collecting a confidence rating in connection
with the face that the witness believes is most likely to
be the perpetrator). Looking at the two ROC curves in

Fig. 5 and mentally projecting the sequential ROC curve
to the right, it seems fairly safe to assume it would still
fall below the simultaneous ROC. Nevertheless, to be
sure about that, one would have to actually perform the
experiment because it is at least theoretically possible
that the ROC curves would cross and the sequential pro-
cedure would become superior in that higher FAR range.
Despite that theoretical possibility, in the FAR range
covered by this analysis (0 to .038), data like these would
indicate a simultaneous superiority effect.
As a general rule, eyewitness ID researchers have been

most interested in determining which procedure yields
superior diagnostic performance over a range in which
even FARmax is low, thereby keeping the risk of falsely
identifying an innocent suspect low. To date, the empir-
ical ROC analyses that have been performed unani-
mously suggest that the simultaneous procedure yields a
higher pAUC than the sequential procedure (Carlson &
Carlson, 2014; Dobolyi & Dodson, 2013; Gronlund et al.,
2012; Exp. 1 of Mickes, Flowe, & Wixted, 2012). Other
studies have reported no significant difference between
the two procedures, but with a trend still favoring the
simultaneous procedure (e.g., Andersen, Carlson, Carlson,
& Gronlund, 2014; Exp. 1b and Exp. 2 of Mickes et al.,
2012; Terrell, Baggett, Dasse, & Malavanti, 2017). More-
over, two police department field studies subsequently
reported findings consistent with the results of these la-
boratory studies (Amendola & Wixted, 2015, 2017;
Wixted, Mickes, Dunn, Clark & W. Wells, 2016). Should
these finding hold in future investigations, they would re-
verse the conclusions of DR-based psychological research
that convinced 30% of US law enforcement agencies to
adopt the sequential lineup procedure.

Policy changes despite the controversy
The on-going debate over the utility of ROC analysis
applied to eyewitness identification procedures has not
greatly limited either its scientific impact or its real-
world impact. In 2014, the National Academy of Sciences
(NAS) convened a committee to evaluate the science of
eyewitness identification. One focus of their work was to
adjudicate the debate over whether the diagnosticity ratio
or ROC analysis offers the best approach for comparing
competing eyewitness identification procedures. With re-
gard to relative merits of ROC analysis vs. the diagnosti-
city ratio, they came to the following conclusion:

Perhaps the greatest practical benefit of recent debate
over the utility of different lineup procedures is that it
has opened the door to a broader consideration of
methods for evaluating and enhancing eyewitness
identification performance. ROC analysis is a positive
and promising step with numerous advantages. For
example, the area under the ROC curve is a single-
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number index of discriminability (National Research
Council, 2014, p. 86).

In light of that development, substantial changes have
been made in terms of policy in law enforcement. A
driving force behind the adoption of the sequential
lineup procedure by many police departments was a pol-
icy adopted by the International Association of Chiefs of
Police (IACP) in 2006, which encouraged sequential ad-
ministration of both photo and live lineups (Inter-
national Association of Chiefs of Police, 2006). However,
in September of 2016, the IACP dropped its longstand-
ing recommendation in favor of the sequential proced-
ure. Their current model policy states: “This policy
recognizes that the sequential and simultaneous ap-
proaches are both valid methods of conducting an iden-
tification procedure and does not recommend one over
the other.” (International Association of Chiefs of Police,
2016, p. 1).
More recently, on 6 January 2017, the Department of

Justice (DOJ) released a memo to federal prosecutors
and federal law enforcement agencies concerning proce-
dures for conducting photo lineups (Yates, 2017). The
memo noted that research and practice had evolved sig-
nificantly since the DOJ last addressed eyewitness identi-
fication issues in 1999 and stated that “…there has been
an evolution in views on whether the ‘sequential’ admin-
istration of a photo array (presenting the witness one
photo at a time) results in more accurate identifications
than a ‘simultaneous’ administration (presenting all of
the photos at once)” (p. 1) and went on to stress that ad-
ministrators may use either simultaneous or sequential
photo arrays. An appendix to the memo noted that re-
cent research has suggested that “… simultaneous proce-
dures may result in more true identifications and fewer
false ones,” (p. 8) which is a succinct summary of what a
procedure that yields a higher ROC can achieve. These
policy changes were based on an AUC measure (specific-
ally, pAUC), not a theory-based measure of discrimin-
ability like d'.

Parametric analyses of AUC
The idea that policy is informed by an AUC measure of
discriminability appears to be generally accepted in other
applied fields, such as radiology, diagnostic medicine,
and polygraph lie detection. In radiology, for example,
Gallas et al. (2012) noted that “The paradigm of ROC
analysis, and the measurement of the AUC in particular,
is essential to the field of diagnostic imaging assessment”
(p. 466). Similarly, when comparing the usefulness of dif-
ferent biomarkers for diagnosing prostate cancer, a re-
cent review of the academic literature noted that “…the
most common analysis, by far, is the area under the

receiver-operating characteristics curve” (Evaluation of
Genomic Applications in Practice and Prevention
(EGAPP) Working Group, 2014, p. 341). And in a review
of polygraph lie detection research, the National Re-
search Council (2003) stated that “We used the area
under an ROC curve extrapolated from each dataset to
summarize polygraph accuracy as manifested in that
dataset” (p. 342). Thus, our suggestion that policy deci-
sions are informed by area under the ROC, not by a the-
oretical estimate of underlying discriminability, is new to
the field of eyewitness identification but is not a new
suggestion generally speaking.
Although, ideally, AUC would be measured non-

parametrically – that is, without relying on any assump-
tions that might be wrong – a Gaussian model is some-
times used to measure it parametrically. For example, in
their review of polygraph testing, the National Research
Council (2003) used an equal-variance Gaussian model
to measure Az (a parametric measure of AUC) for stud-
ies that reported only a single point on the ROC. When
no more than a single ROC point is available, the only
way to obtain a non-parametric measure of the AUC
would be to draw two lines extending from that point –
one to the lower left corner of the ROC and the other to
the upper right corner – and to then compute the area be-
neath the resulting polygon. Because, in practice, empir-
ical ROC data are almost always curvilinear, this approach
would likely underestimate the true AUC. To address that
limitation, a Gaussian model can be used to more rea-
listically extrapolate the empirical ROC curve so that the
AUC can be measured parametrically (Macmillan &
Creelman, 2005).
The Gaussian model that is used to extrapolate the

empirical ROC curve and to then compute the area be-
neath it looks much like the signal detection model of
memory depicted in Fig. 2 (e.g., two Gaussian distribu-
tions separated by d'). However, unlike Fig. 2, when
using a Gaussian model for this purpose, the nature of
the variable represented on the x-axis is not a relevant
consideration. Instead, the x-axis represents whatever
underlying variables might combine to determine em-
pirical performance. The only assumption that this
model makes is a statistical one, namely, that the aggre-
gate underlying variable, whatever it might be, can be
adequately modeled by two Gaussian distributions.
That token model is then used to fit a curve through
the one available ROC data point. Once the empirical
trajectory of the ROC curve is extrapolated in that
manner, the area beneath it (i.e., the measure of interest
for policymaking purposes) can be computed.
A similar strategy has been recommended in the field

of eyewitness identification when the data are such that
ROC analysis cannot otherwise be performed. Specific-
ally, Mickes et al. (2014) recommended that empirical
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discriminability be estimated by computing Gaussian-
based d' for lineup studies that report only a single
ROC point. Estimating d' (specifically, z-transformed
HR minus z-transformed FAR) from a single ROC point
is analogous to estimating AZ from a single ROC point
because d' and AZ are monotonically related by the fol-
lowing equation (Macmillan & Creelman, 2005):

AZ ¼ Φ d0=
ffiffiffi
2

p� �
:

Thus, our claim that policymakers care only about
AUC (not a theory-based measure of d') should not be
construed as an indictment of the use of a generic
Gaussian-based statistical model to parametrically esti-
mate AUC (or pAUC in the case of lineups) when such
an estimate could not otherwise be obtained.
Unlike a policymaker, a theoretician is interested in es-

timating the specific underlying variables that affect em-
pirical discriminability. For example, empirical ROC data
will decrease toward the diagonal line of chance per-
formance the more that (1) the memory signals for tar-
gets and foils overlap and/or (2) the confidence criteria
vary from decision to decision (Wickelgren & Norman,
1966). Area under the curve measures (both non-
parametric pAUC and parametric AZ) will also decrease
towards their minimum values of .50 in either case. But
a theory of lineup memory would make a specific pre-
diction about the first latent variable (the distribution of
memory signals) without necessarily making any predic-
tion about the second (criterion variability). In paramet-
ric ROC analysis, the effects of those latent variables are
purposefully conflated because the only goal is to obtain
a “best guess” as to the likely empirical trajectory of the
ROC curve (had those empirical ROC data been col-
lected). To test the predictions of a theory of memory, a
statistical model like that must give way to a model of
memory signals that can measure the latent variables of
interest. We turn to that issue next.

Theoretical models of latent variables
A signal-detection-based theory about how the photos
in a lineup generate memory signals makes a prediction
about the degree to which memory signals for targets
and foils overlap. We might refer to that memory-based
d' as d'm, where the subscript m stands for “memory.”
As noted by Wickelgren and Norman (1966), when d' is
computed from the HR and FAR of an old/new recogni-
tion procedure, different sources of variance (e.g., vari-
ability in memory signals and variability in criterion
placement) are conflated. If one assumes that there is no
criterion variability, then d' = d'm. More realistically, cri-
terion variability is assumed to exist, but its effects are
usually (at least implicitly) assumed to be small and to
be equal across two conditions. Under those

assumptions, d' can be safely compared for Condition A
vs. Condition B to test theory-based predictions about
d'm. That is, if d' differs significantly across conditions,
the difference can be attributed to a difference in d'm
despite the presumed existence of some criterion vari-
ability. This is how performance is usually assessed in
studies of recognition memory (i.e., d' is measured for
each condition, and any difference is usually attributed to
a difference in the degree to which memory signals
overlap).
As described above, because an AUC measure is af-

fected by latent variables other than just d'm, the two
measures are potentially dissociable. But there is more
to the story of their potential dissociability because even
when all latent variables are equated for two procedures,
AUC and d'm can still disagree. In this regard, it has long
been known that d'm may not directly correspond to
AUC when comparing old/new vs. 2-alternative forced-
choice (2AFC) recognition memory. For the old/new
task, the participant is assumed to say “old” if the test
item exceeds a decision criterion and to say “new” other-
wise. For the 2AFC task, the simplest strategy would be
for the participant to simply choose the more familiar of
the two test items.3 In that case, for both test formats, the
memory signals are drawn from the same distributions, so
d'm is the same in both cases. Yet, due to structural differ-
ences in the testing procedures, the empirical HR-FAR
pair obtained from the 2AFC procedure will fall on a
higher ROC curve than the HR-FAR pair obtained from
old/new recognition (Macmillan & Creelman, 2005). If an
atheoretical Gaussian statistical model were used to ex-
trapolate the empirical ROC curve from that point (and to
then parametrically measure Az and/or d' = zHR − zFAR),
the result would be that Az-2AFC > Az-old/new and d'2AFC >
d'old/new. More specifically, given the standard assumptions
of signal detection theory, it should be the case that d'2AFC
= (√2) d'old/new (Macmillan & Creelman, 2005). This is
true even though a model that was cognizant of the pro-
cedural difference between the two testing procedures,
when fit to the data, would correctly reveal that d'm is the
same for old/new and 2AFC recognition. In other words,
it would be the structural aspects of the testing procedure
itself (not an underlying difference in d'm or any other la-
tent variable) that is responsible for the difference in their
empirical ROC curves.
The key point is that, for multiple reasons, empirical

ROC curves can differ between two conditions even
when d'm is equated. The two conditions might yield dif-
ferent empirical ROCs because (1) despite being equated
in terms of latent memory signals (d'm), they differ in
terms of a different latent variable (e.g., criterion vari-
ability) or (2) despite being equated in terms of all latent
variables, the format of one testing procedure facilitates
empirical performance relative to a different testing
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format (e.g., 2AFC vs. old/new recognition). Our claim is
that policymakers should care only about getting per-
formance on the highest empirical ROC, no matter how
one gets there and no matter how the two procedures
compare in terms of underlying latent variables.4Again,
the reason is that the procedure that yields the higher
empirical AUC can achieve both a higher HR and a
lower FAR than a competing procedure. Theoreticians,
by contrast, are interested in understanding the variables
that specifically affect underlying latent variables. The
better we understand the factors that affect d'm, for ex-
ample, the better positioned we will be to figure out how
to increase it (thereby elevating the empirical ROC, all
else being equal).

The role of latent variables in the ROC controversy
The controversy over ROC analysis in the eyewitness
identification literature is largely predicated on the idea
that, in prior work, we have claimed the opposite of
what we are claiming here (i.e., that the applied implica-
tions of ROC analysis come from d'm, not pAUC). For
example, in the latest critique of ROC analysis, Smith et
al. argued against the following idea, which they attrib-
uted to us: “…the procedure that produces superior
underlying discriminability produces superior applied
utility” (Smith et al., 2017, p. 127, emphasis added).
Similarly, Lampinen (2016), again citing us, suggested
that “One reason one might argue for the use of the
ROC approach, over more traditional analyses, is if one
believes that area under the ROC curve provides a better
index of underlying memory discriminability” (Lampinen,
2016, p. 24, emphasis added). Both were referring to what
we have here denoted d'm (i.e., the degree to which the
distributions of target and foil memory signals overlap).
Contrary to these claims, we have not argued that the

procedure that yields higher d'm is the procedure that
policymakers should prefer. Instead, from the beginning,
we have claimed that the procedure that yields higher
atheoretical (non-parametric) pAUC is the procedure
that policymakers should prefer (e.g., see Mickes et al.,
2012, p. 368, where we first explain the problem with
relying on a theoretical measure like d'). It is, in fact,
why Mickes et al. (2012) actually estimated pAUC – not
d'm – from ROC data to make claims about the applied
implications of our research comparing simultaneous vs.
sequential lineups. Nevertheless, it seems clear that we
were understood as having made the exact opposite
claim, which is why we have addressed the issue in much
greater detail in the present article.
Both Lampinen (2016) and Smith et al. (2017) ran sim-

ulations showing that pAUC can differ across eyewitness
identification procedures even when d'm is equated for
the two procedures. Both judged that result to be prob-
lematic for ROC analysis, but, as explained above, a

dissociation between d'm and pAUC can arise for mul-
tiple reasons and is not in any way problematic. We next
illustrate that point in more detail by considering an ex-
treme scenario in which the two measures go in opposite
directions (i.e., when d'm is higher for Condition A but
pAUC is higher for Condition B). To appreciate why the
two measures can go in opposite directions without
contradiction, it is important to consider how d'm would
actually be estimated from ROC data like those depicted
earlier in Table 1. As we will see, fitting a theory-based sig-
nal detection model to multiple ROC points to measure
latent variables like d'm and criterion variability is funda-
mentally different from using a generic signal detection
model to extrapolate the empirical ROC curve from a sin-
gle point in order to parametrically estimate Az.

Measuring d'm and criterion variability
To measure d'm from lineup data, one needs to fit a
model that is cognizant of the task demands (e.g.,
whether the task is a showup, a 2AFC task, a simultan-
eous lineup, or a sequential lineup) and that can also
separate the effects of variability in criterion placement
from the effects of variability in memory signals. We de-
scribe one such model here for the simultaneous proced-
ure and then consider how to actually fit that model to
empirical ROC data.
According to the model presented earlier in Fig. 2, signal

detection theory holds that unobservable (latent) memory
strength values for targets and foils are distributed accor-
ding to Gaussian distributions with means of μTarget and
μFoil, respectively. For a simultaneous lineup, we noted that
the simplest decision strategy on both target-present and
target-absent trials would be to first identify the photo that
generates the strongest signal and to then declare it to be a
target-present trial if that signal exceeds a decision criter-
ion (with confidence determined by the highest confidence
criterion that is exceeded). This decision rule is usually
called the MAX decision rule in perception research (e.g.,
Eckstein, Thomas, Palmer, & Shimozaki, 2000; Nolte &
Jaarsma, 1967; Palmer, Fencsik, Flusberg, Horowitz, &
Wolfe, 2011; Palmer, Verghese, & Pavel, 2000; Swensson,
1996; Swensson & Judy, 1981) and is often called the BEST
decision rule in eyewitness identification research (Clark,
2003; Clark, Erickson, & Breneman, 2011).5

The ability of participants to discriminate between targets
and foils is represented by the theoretical distance between
the means of the μTarget and μFoil distributions. Assuming
an equal-variance model (i.e., σTarget = σFoil = σ) the meas-
ure of theoretical discriminability is what is usually denoted
d' and what we here denote d'm to underscore the fact that
we are measuring the degree to which underlying memory
signals overlap. This model assumes that the two distribu-
tions have equal variance, but an unequal-variance model
sometimes fits the data better (e.g., Mickes et al., 2017). In
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that case, the measure of theoretical discriminability would
no longer be d'm but would instead be da (Macmillan &
Creelman, 2005). The formula for da is as follows:

da ¼ μTarget−μFoil
� �

=√ ½ σ2Target þ σ2Foil
� �	 


:

When σTarget = σFoil, we can replace both by σ, and the
denominator reduces to √ [½(σ2 + σ2)] = √ σ2 = σ. In
that case, the formula reduces to the equation for d'm.
Thus, the above equation quantifies discriminability for
the general case.
Fitting a signal detection model for lineups to data like

those shown in Table 1 involves estimating at least six
parameters using steps detailed in the Appendix. As de-
scribed there, fitting the model requires specifying separ-
ate likelihood functions for suspect IDs, filler IDs and
lineup rejections (No IDs) for target-present and target-
absent lineups. These functions can then be used to ad-
just the six parameters in such a way as to minimize
chi-squared deviations between predicted and observed
data or to maximize the likelihood of the data. The six
parameters consist of the five confidence criteria (the
mean locations of the five confidence criteria on the de-
cision axis, μC1 through μC5), plus μTarget (μFoil is fixed at
0 and σTarget and σFoil are both fixed at 1 in the equal-
variance case). The σTarget parameter can be allowed to
differ from 1 to test whether the ROC data are better fit
by an unequal-variance model. If the locations of the
confidence criteria are assumed to vary to an appreciable
degree across trials or (in the case of aggregated data)
across observers, then a seventh parameter, σC (the
standard deviation of the criterion locations), could be
estimated as well. Referring to Fig. 2, setting σC > 0
means that the placement of a confidence criterion like
c5 (for example) varies from witness to witness instead
of remaining fixed (i.e., instead of σC = 0).
When the equal-variance version of the model is fit to

the ROC data in Table 1, it yields an estimate of theoret-
ical discriminability in terms of d'm. To the extent that
the assumptions of the model are accurate, the estimate
of underlying discriminability is also accurate. We actu-
ally generated the hypothetical data shown in Table 1
using the equal-variance model shown in Fig. 2 (with d'm
set to 1.4 and σC set to 0) using a MAX decision rule, so
the model would necessarily fit those data well indeed,
and d'm would be estimated to be about 1.4. Critically,
had we set σC to a value greater than 0, the simulated
empirical ROC data would have fallen closer to the line
of chance performance. If the model were fit to those
data, the estimate of σC would now be greater than 0,
but d'm would be still estimated to be about 1.4. In other
words, there would be a dissociation between pAUC and
d'm. We next illustrate this dissociation by considering

the even more extreme scenario where the two measures
go in opposite directions.

Can pAUC and d'm return opposite conclusions?
The hypothetical simultaneous lineup data shown in Fig. 6
(filled circles) were generated by the model depicted in
Fig. 2 using the MAX decision rule. They are, in fact, the
same simultaneous lineup ROC data shown earlier in Figs.
4 and 5, with d'm = 1.4. Now, however, the ROC points
have not been atheoretically connected by straight lines.
Instead, a smooth curve has been drawn through the ROC
data, and the curve was generated by the model with d'm
= 1.4 and with σC = 0. For the sequential lineup, the data
were also generated by a model like the one depicted in
Fig. 2 but with three important differences described next.
First, d'm for the sequential lineup was set to the

higher value of 1.6. A longstanding theory of why se-
quential lineups are superior to simultaneous lineups
holds that sequential lineups encourage an “absolute”
judgment strategy in which each face is individually
compared to memory of the perpetrator, whereas

Fig. 6 The same receiver operating characteristic (ROC) data as in
Fig. 5 except that the smooth curves generated by a theoretical
(signal detection) model are drawn through the ROC data points.
The dashed line represents chance performance. To generate these
data, d' was set to 1.4 for the simultaneous procedure and to 1.6 for
the sequential procedure. The confidence criteria for the simultaneous
lineup ranged from 1.5 (the overall decision criterion, c1) to 2.5 (the
high-confidence decision criterion, c5). The corresponding confidence
criteria for the sequential lineup ranged from 2.0 to 3.0, which captures
the widely held view that sequential lineups induce more conservative
responding than simultaneous lineups. Finally, criterion variance (σC)
was set to 0 for the simultaneous lineup and to 0.75 for the sequential
lineup, which is why the sequential lineup, despite its higher d', yields a
lower ROC than the simultaneous lineup
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simultaneous lineups encourage a “relative” judgment
strategy in which the faces in the lineup are judged in re-
lation to each other. The absolute/relative distinction
was originally advanced as a theory of response bias,
with a relative judgment strategy corresponding to in-
creased pressure to choose someone from the lineup. In
other words, a relative judgment strategy was originally
construed as a liberal response bias (Wells, 1984). How-
ever, if an absolute judgment strategy also decreased the
overlap in the memory signals of innocent and guilty
suspects for some reason, which is an idea that is some-
times entertained (e.g., Clark et al., 2011), then under-
lying d'm would be higher for the sequential procedure.
For illustrative purposes, we assume that d'm is in fact
higher for the sequential procedure because it encour-
ages an absolute judgment strategy.
Second, a “first-above-criterion” decision rule was used

instead of the MAX decision rule (Kaesler, Semmler, &
Dunn, 2017) because the sequential procedure typically
stops when the first face is identified. The memory sig-
nal associated with that face, which is not necessarily the
MAX face in the lineup, determines the level of confi-
dence. If these data were fit by a model to estimate d'm,
the model would have to be cognizant of this decision
rule. Thus, it would differ from the model outlined in
the Appendix and would instead correspond to the
model used by Kaesler et al. (2017).
Third, criterion variability was introduced by setting

σC = 0.75. That is, each confidence criterion was associ-
ated with a mean location instead of a fixed location,
and each had a standard deviation of 0.75. As noted
earlier, criterion variability harms empirical discrimin-
ability. Thus, although we programmed a d' advantage
for the sequential procedure (setting d'm = 1.6 for the se-
quential lineup and d'm = 1.4 for the simultaneous
lineup), we programmed a criterion variability advantage
for the simultaneous procedure (setting σC = 0 for the
simultaneous lineup and σC = 0.75 for the sequential
lineup). Criterion variability might be higher for the se-
quential procedure because instead of making only one
decision per lineup, as a witness presented with a simul-
taneous lineup does, a witness presented with a sequen-
tial lineup makes as many as six decisions, with each
decision providing an opportunity for the placements of
the confidence criteria to change.
For the hypothetical data in Fig. 6, even though under-

lying theoretical discriminability (d'm) is greater for se-
quential lineups than it is for simultaneous lineups, the
sequential ROC data nevertheless fall closer to the diag-
onal line of chance performance (i.e., pAUC is lower for
the sequential procedure, and parametric Az would be
lower as well). The reason is that criterion variability has
a similar effect on the ROC as reducing d'm, which is
that is the ROC data are pulled down closer to chance

performance (Macmillan & Creelman, 2005). In our ex-
ample, the programmed advantage of increased theoret-
ical discriminability for the sequential condition is more
than counteracted by the programmed disadvantage of
increased criterion variability and leads to a lower em-
pirical ROC. The resulting ROC data are such that an
AUC measure (whether parametric or non-parametric)
would be lower for the sequential procedure. That is,
pAUCSIM > pAUCSEQ (as illustrated earlier in Fig. 5 for
these same ROC data), despite the fact that, in terms of
underlying theoretical discriminability, d'm-SEQ > d'm-SIM.
In a case like this, which procedure yields higher dis-

criminability? Is one measure right and the other wrong?
In truth, both measures are right, but they answer differ-
ent questions. The d'm measure is right because the distri-
butions of underlying memory signals in the brains of
eyewitnesses are in fact less overlapping for sequential
lineups than simultaneous lineups (as might be predicted
by a psychological model). Indeed, if the appropriate signal
detection models were fit to the two ROC functions in
Fig. 6 (i.e., models that were cognizant of the different de-
cision rules used for simultaneous and sequential lineups
and that separately estimated d'm and criterion variability),
they would correctly reveal that while criterion variability
(σC) is greater for the sequential procedure, d'm is also
greater for the sequential procedure. If a model predicted
the observed difference in d'm (higher for the sequential
procedure in this hypothetical example), the data would
support that model even though empirical discriminability
(pAUC) goes in the opposite direction.
Nevertheless, the pAUC measure is also right because,

in this hypothetical example, eyewitnesses are more
likely to correctly sort innocent and guilty suspects into
their true categories when simultaneous lineups are used
compared to when sequential lineups are used (i.e.,
pAUCSIM > pAUCSEQ). A Gaussian-based parametric
measure of AUC would also correctly reveal a simultan-
eous advantage in terms of empirical discriminability
(i.e., Az-SIM > Az-SEQ). The sequential procedure suffers
in this example because the ability to correctly sort in-
nocent and guilty suspects is determined not only by the
degree to which the underlying memory signals overlap
but also by criterion variability. As a result, in actual
practice, eyewitnesses would better distinguish between
innocent and guilty suspects using the simultaneous pro-
cedure. Thus, in this example, both measures – d'm and
pAUC (or Az) – are correct despite what, superficially,
looks like a blatant contradiction.

Competing theories of underlying discriminability
for lineups
Having illustrated the key difference between empirical
and theoretical discriminability, we now consider two re-
cently proposed theories of why empirical discriminability
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(pAUC) differs for different eyewitness identification pro-
cedures. The empirical result of interest is that simultan-
eous lineups yield a higher pAUC than both sequential
lineups and showups (Carlson & Carlson, 2014; Dobolyi &
Dodson, 2013; Gronlund et al., 2012; Mickes et al.,
2012; Neuschatz, Wetmore, Key, Cash, Gronlund &
Goodsell, 2016; Wetmore, Neuschatz, Gronlund, Wooten,
Goodsell & Carlson, 2015). In 2014, we advanced a theory
according to which, compared to sequential lineups, sim-
ultaneous lineups help witnesses to notice and to then dis-
count non-diagnostic facial features (namely, the features
that are common across the lineup members). By dis-
counting non-diagnostic features, eyewitnesses are better
able to focus attention on diagnostic features (Wixted &
Mickes, 2014). This is a theory of underlying theoretical
discriminability, and it assumes that pAUC is greater for
simultaneous than sequential lineups precisely because
underlying d'm is also greater for simultaneous than se-
quential lineups. That is, according to this theory, there is
no dissociation between conclusions based on d'm and
pAUC. The same theory accounts for why simultaneous
lineups also yield higher empirical discriminability than
showups. In a showup, the test consists of a single face
(i.e., the innocent suspect or the guilty suspect presented
in isolation), so there is no opportunity to learn about
non-diagnostic facial features. In summary, according to
this theory, pAUCSIM > pAUCSEQ and pAUCSIM > pAUC-
SHOWUP because d'm-SIM > d'm-SEQ and d'm-SIM > d'm-

SHOWUP, respectively.
According to a competing theory recently proposed

by Smith et al. (2017), showups yield the same under-
lying discriminability as simultaneous lineups (i.e., d'm-

SIM = d'm-SHOWUP), but their empirical ROCs measured
in terms of pAUC differ due to other factors. According
to this model, different eyewitness identification proce-
dures are differentially susceptible to the deleterious
effects of criterion variability. Their simulations showed
that, in the absence of criterion variability and with d'm
equated, the two procedures produce comparable
empirical ROC curves. However, in the presence of cri-
terion variability (equated across the two procedures),
simultaneous lineups yielded higher empirical discrim-
inability (measured by pAUC) than showups. This
result is not unlike the difference in AUC produced by
old/new and 2AFC recognition tests even when under-
lying latent variables are equated across testing proce-
dures. In both cases, it is the structural constraints of
the testing procedure itself, not a difference in under-
lying latent variables, that results in a difference in the
empirical ROC curves. Smith et al. (2017) did not
investigate what their criterion variability theory pre-
dicts about simultaneous vs. sequential lineups, so we
replicated their simulation and extended it to include
the sequential procedure.

For this simulation, d'm was set to be equal for all
three procedures (d'm = 1.4 for the simultaneous lineup,
the sequential lineup and the showup). In addition, cri-
terion variability (σC) was also set to be equal for all
three procedures. Because the relevant latent variables
(d'm and σC) were the same for all three procedures, one
might expect that all three procedures would yield the
same empirical ROC. However, as shown by Smith et al.
(2017), and as we have long known in the context of
old/new vs. 2AFC, that is not always the case. We simu-
lated three scenarios: no criterion variability, medium
criterion variability and large criterion variability.

Fig. 7 Simulated receiver operating characteristic (ROC) data generated
by a simultaneous lineup using the MAX decision rule, a sequential
lineup using the “first-above-criterion” decision rule, and a showup.
A showup is an old/new recognition memory task in which a
single face is presented for an old/new decision. For all three
procedures, d' was set to 1.4, the overall decision criterion was set
to 1.7, and 100,000 simulated trials were run. The top panel shows the
simulated results with criterion variability set to 0. The middle panel
shows the simulated results with criterion variability set to 0.5. The
bottom panel shows the simulated results with criterion variability set to
2.0 (extreme criterion variability). The confidence criteria were
programmed to shift in lock step to prevent violations of monotonic
order (lowest = 1 to highest = 5). The dashed line represents the line of
chance performance
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Although d'm was held constant at 1.4 in each run, the
value of σC was set to 0 for all three procedures in the
first run, to 0.5 for all three procedures in the second
run, and to 2.0 (the value used by Smith et al., 2017) for
all three procedures in the third run. The results of the
simulation are shown in Fig. 7.
In the absence of criterion variability (top panel of

Fig. 7, σC = 0), the three ROC curves basically fall atop
one another, which means that empirical discriminabil-
ity (as measured by pAUC) is predicted to be the same
(or at least very similar) for all three procedures. This is
the typical situation in which underlying discriminabil-
ity and pAUC lead to the same conclusion. When mod-
erate criterion variability is added to the model (middle
panel of Fig. 7, σC = 0.5), the ROCs for all three proce-
dures move closer to the line of chance performance
(i.e., criterion variability harms empirical discriminabil-
ity), but they all still basically trace out the same ROC
curve. However, when a large degree of criterion vari-
ability is introduced (lower panel of Fig. 7, σC = 2.0),
the ROCs for all three procedures drop even closer to
the line of chance performance and they now begin to
separate from each other. This is true even though
underlying discriminability has not changed and is still
set to d'm = 1.4 for all three procedures.
As shown by Smith et al. (2017), and as we replicate

here, when σC = 2.0, empirical discriminability for the
showup procedure is impaired to a greater extent than
empirical discriminability for the simultaneous lineup
procedure. In addition, as we show here for the first
time, empirical discriminability for the sequential
lineup procedure is also impaired by criterion variabil-
ity to about the same degree that the showup procedure
is impaired. The sequential lineup suffers from criterion
variability because its stopping rule pulls performance
down towards the diagonal line of chance perform-
ance whenever the criterion is randomly liberal (cf.
Rotello & Chen, 2016).
The fact that extreme criterion variability predicts the

same outcome that is predicted by the diagnostic
feature-detection theory means that there are now two
competing theories of underlying latent variables that
can explain why simultaneous lineups yield a higher
pAUC than showups and sequential lineups. The diag-
nostic feature-detection theory attributes the difference
to a d'm advantage enjoyed by simultaneous lineups
compared to the other two procedures. By contrast, the
criterion variability theory assumes that d'm (and σC) is
equal for the three procedures and that the difference in
pAUC arises because the simultaneous procedure is less
susceptible to the deleterious effects of criterion variabil-
ity than showups and sequential lineups. Future research
will undoubtedly test the predictions of these competing
theories by, for example, comparing how well they can

fit empirical ROC data, and the results will help to guide
efforts to improve eyewitness identification procedures.

Conclusion
Here, we advanced the argument that when it comes to
informing real-world policy decisions about eyewitness
identification procedures, an empirical measure of dis-
criminability (pAUC, or its parametric counterpart,
when necessary) takes precedence over a theoretical
measure of the degree to which memory signals overlap
(d'm). The pAUC measure informs policy because, in
terms of empirical reality, the procedure that yields the
higher area under the ROC can achieve both a higher
HR and a lower FAR than a competing procedure. No
theory of underlying memory signals (and no measure of
d'm) will change that fact.
The idea that discriminability should be measured

using ROC analysis for competing eyewitness identifica-
tion procedures has proven to be controversial. The con-
troversy is based almost entirely on the mistaken idea
that the proponents of ROC analysis believe that a meas-
ure underlying theoretical discriminability directly informs
policy decisions. However, from the beginning, the propo-
nents of ROC analysis have argued against using a theor-
etical measure of discriminability to inform policy
decisions and in favor of using an atheoretical (non-para-
metric) measure of the area under the empirical ROC
curve. In other words, we and others have argued that,
just as in many other applied fields, policy in the field of
eyewitness identification with regard to competing eyewit-
ness identification procedures is informed by the area
under the empirical ROC (not by a theoretical measure of
the degree to which distributions of underlying memory
signals overlap in the brains of eyewitnesses).
Unlike policymakers, theoreticians seek to measure

underlying latent variables like d'm (the degree to which
memory signals overlap) and σC (criterion variability). By
fitting a signal detection model to ROC data, one can
separately estimate these parameters to test the predic-
tions of competing theories. Two theories that have been
proposed in this regard are the diagnostic feature-
detection theory (Wixted & Mickes, 2014) and criterion
variability theory (Smith et al., 2017). Both theories pre-
dict that pAUC for simultaneous lineups should exceed
that for sequential lineups and showups, but for different
reasons. The diagnostic feature-detection theory attri-
butes the pAUC effect to a higher d'm associated with
the simultaneous procedure. The criterion variability
theory instead attributes the pAUC effect to the fact that
the simultaneous procedure is less susceptible to the
deleterious effects of extreme criterion variability.
Notably, the architects of the criterion variability the-

ory include the creators of, and the staunchest propo-
nents of, the sequential lineup procedure. The fact that

Wixted and Mickes Cognitive Research: Principles and Implications  (2018) 3:9 Page 18 of 22



their new theory predicts that simultaneous lineups
should be diagnostically superior to sequential lineups in
terms of empirical discriminability suggests that a con-
vergence of views may be developing despite an appar-
ent controversy over ROC analysis. According to both
theoretical accounts proposed this far (the diagnostic
feature-detection theory and the criterion-variability the-
ory), and according to the relevant empirical ROC data,
simultaneous lineups are diagnostically superior to se-
quential lineups in an applied sense (pAUCSIM > pAUC-
SEQ). Viewed in this light, the “controversy” over ROC
analysis of lineup performance actually consists of a nor-
mal scientific debate about which theory of underlying
latent variables better accounts for the empirical data.
Critically, the resolution of that debate will have no
bearing on the policy implications of ROC analysis. The
policy implications are derived from an empirical meas-
ure of discriminability (pAUC), which is based on the
rate at which innocent and guilty suspects (not foils, in
the case of lineups) are identified using a particular eye-
witness identification procedure. There is no controversy
over the claim that pAUC for simultaneous lineups is, in
every study conducted thus far, greater than or equal to
pAUC for both sequential lineups and showups.

Endnotes
1In a fair lineup, in which no one is designated to

serve as the innocent suspect (as in Table 1), the overall
target-absent filler ID rate is linearly related to the
innocent-suspect false ID rate (i.e., FAR is equal to one
sixth times the filler ID rate). Thus, when comparing
two lineup procedures, the target-absent filler ID rate
can be used in place of FAR.

2An alternative view is that ROC analysis is flawed be-
cause one must also consider filler IDs in order to decide
which of the two lineup procedures was diagnostically su-
perior. However, to date, no example has been proffered
according to which pAUC is higher for Procedure A in a
given range but Procedure B should nevertheless be rec-
ommended to policymakers because of how the two pro-
cedures differ with respect to filler IDs.

3In this simplest case, confidence in the chosen item
would be based solely on the strength of the memory sig-
nal generated by that item. Alternatively, the subject might
create a new psychological variable by subtracting the fa-
miliarity of one item from the other, and the recognition
decision (and confidence) might be based on that trans-
formed variable. For this latent variable, d’2AFC > d’old/new.

4The only exception would be when implementation
costs for the procedure yielding the higher ROC exceed
the implementation costs of the procedure that yields
the lower ROC.

5Macmillan and Creelman (2005) referred to the MAX
decision rule as the Independent Observations model.

Other signal detection models applied to lineups assume
that the decision is based on a transformed memory sig-
nal, such as the sum of the memory signals associated
with the faces in the lineup (Duncan, 2006), but we con-
sider only the simpler Independent Observations signal
detection model here.

Appendix
The likelihood functions for fitting a signal detection
model to data from a fair lineup can be worked out by
specifying the joint probabilities of the events that result
in a given outcome (suspect ID, filler ID, or no ID). As
an example, consider the probability of identifying the
guilty target with memory strength x1 from a target-
present lineup. There is (1) some probability of observ-
ing a particular memory strength of the target, x1, (2)
some probability that x1 will be the highest (MAX)
memory strength of the lineup members and (3) some
probability, f(x), that the decision variable will exceed
the decision criterion (where x represents the vector of
memory signals associated with the faces in the lineup).
The joint probability of those events is the probability
that the target will be identified from a target-present
lineup. For the Independent Observations model consid-
ered in the main text, the decision variable, f(x), is x1 it-
self (i.e., the untransformed MAX memory signal). Here,
we describe how to write the likelihood function for that
probability and then describe the similar approach used
to write the likelihood functions for the probability of
observing a filler ID from a target-present and then from
a target-absent lineup.

Probability of observing a target from a target-present
lineup
Assuming a standard equal-variance signal detection
model, the probability of observing target memory
strength x1 (event 1) is given by a Gaussian distribution
with mean, μ1 = μTarget and variance σ1

2 = σ2Target:

P x1ð Þ ¼ 1ffiffiffiffiffiffiffiffiffiffi
2πσ2

1

p e− x1−μ1ð Þ2= 2σ21ð Þ: ð1Þ

The probability that x1 is greater than the memory
strength of a filler j is obtained by integrating a Gaussian
distribution with mean μj = μFoil and variance σj

2 = σ2Foil
from −∞ to x1:

1ffiffiffiffiffiffiffiffiffiffi
2πσ2

p
Z x1

−∞
e− x j−μ jð Þ2= 2σ2jð Þdxj ¼ Φ

x1−μ j

σ j

� �
; ð2Þ

where Φ is the standard cumulative normal distribution.
Thus, the probability that a given x1 is greater than the
value of all foils in a lineup of size k is:
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P x2…k < x1jx1ð Þ ¼
Yk
j¼2

Φ
x1−μ j

σ j

� �
: ð3Þ

And the probability that x1 exceeds the decision criterion,
c, is equal to 1 minus the probability that x1 falls below c:

P x1ð icjx2…xk < x1 ¼ 1−Φ
c−x1
σc

� �
; ð4Þ

where σc is the standard deviation of the criterion place-
ment (σc = 0 if no criterion variability is assumed). Thus,
the probability of observing x1 and the probability that
x1 is greater than the value of all lures in a lineup of size
k and the probability that x1 exceeds the decision criter-
ion, integrated over all possible x1 (i.e., over all possible
target memory-strength values), is given by Eq. 1 × Eq. 3
× Eq. 4 (integrated from −∞ to +∞):

1ffiffiffiffiffiffiffiffiffiffi
2πσ2

p
Z þ∞

−∞
e− x1−μ1ð Þ2= 2σ21ð Þ Yk

j¼2

Φ
x1−μ j

σ j

� �
1−Φ

c−x1
σc

� �� �
dx1:

ð5Þ

Again, this is the likelihood of observing a filler ID
from a target-present lineup. In MATLAB, the code for
this function could be written as:

f ¼ @ xð Þ normpdf x;mu t; sigma tð Þ:
� normcdf x;mu d; sigma dð Þ:^ k−1ð Þ:
� ð1−normcdf c; x; sigma cð Þ;

where mu_t = μTarget, mu_d = μFoil, sigma_t = σTarget, sig-
ma_d = σFoil, k is lineup size, c is the confidence criter-
ion and sigma_c = σc. The parameters μTarget and σTarget
are estimated by the fitting procedure, whereas μFoil and
σFoil are set to 0 and 1, respectively. This function corre-
sponds to the probability of observing a target ID from a
target-present lineup made with a particular level of
confidence associated with criterion, c. If there are five
confidence criteria for making a positive ID (as in Fig. 2),
there would be five separate confidence parameters to inset
into this equation (c1 through c5). Integrating this function
from −∞ to +∞ yields the probability of a target ID with a
particular level of confidence from a target-present lineup,
p_t, which can be computed in MATLAB using:

p t ¼ integral @ xð Þ f xð Þ;−15; 15ð Þ:

Probability of observing a filler (i.e., a foil) from a target-
present lineup
The second likelihood function specifies the likelihood of
observing a filler ID from a target-present lineup. The
probability of observing filler memory strength x1 from a
target-present lineup is given by Eq. 1 with mean, μ1 =
μFoil and variance σ1

2 = σ2Foil. The probability that x1 is
greater than the memory strength of another filler j in the

lineup is obtained by integrating a Gaussian distribution
with mean μj = μFoil and variance σj

2 = σ2Foil from −∞ to x1,
using Eq. 2. The probability that x1 is also greater than the
memory strength of the target is obtained by integrating a
Gaussian distribution with mean μj = μTarget and variance
σj
2 = σ2Target from −∞ to x1, again using Eq. 2. Thus, the
probability that a given x1 is greater than the value of all
the k − 2 fillers in a lineup of size k is:

P x2…k < x1jx1ð Þ ¼
Yk−1
j¼2

Φ
x1−μDistractor
σDistractor

� �" #
Φ

x1−μTarget
σTarget

� �
:

And the probability that x1 exceeds the decision criter-
ion, c, is equal to 1 minus the probability that x1 falls
below c:

P x1 > cð jx2…xk < x1 ¼ 1−Φ
c−x1
σc

� �
:

Thus, the probability of observing x1and the probabil-
ity that x1 is greater than the value of all foils in a lineup
of size k and the probability that x1 exceeds the decision
criterion, integrated over all possible xi (i.e., over all pos-
sible memory-strength values for a filler) is given by:

1ffiffiffiffiffiffiffiffiffiffi
2πσ2

p
Z þ∞

−∞
e− x1−μ1ð Þ2= 2σ21ð Þ Yk−1

j¼2

Φ
x1−μ1
σ1

� �

Φ
x1−μTarget
σTarget

� �
1−Φ

c−x1
σc

� �� �
dx1:

Again, this is the likelihood of observing a filler ID
from a target-present lineup.

Probability of observing a filler (i.e., a foil) from a fair
target-absent lineup
The third and final likelihood function specifies the like-
lihood of observing a filler ID from a target-absent
lineup. The probability of observing filler memory
strength x1 from a target-present lineup is given by Eq. 1
with mean, μ1 = μFoil and variance σ1

2 = σ2Foil. The prob-
ability that x1 is greater than the memory strength of an-
other filler j in the lineup is obtained by integrating a
Gaussian distribution with mean μj = μFoil and variance
σj
2 = σ2Foil from −∞ to x1, using Eq. 2. Thus, the probabil-
ity that a given x1 is greater than the value of all of the
other k – 1 fillers in a lineup of size k is:

P x2…k < x1jx1ð Þ ¼
Yk
j¼2

Φ
x1−μ1
σ1

� �
:

And the probability that x1 exceeds the decision criter-
ion, c, is equal to 1 minus the probability that x1 falls
below c:
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P x1 > cð jx2…xk < x1 ¼ 1−Φ
c−x1
σc

� �
:

Thus, the probability of observing x1and the probabil-
ity that x1 is greater than the value of all other foils in a
lineup of size k, integrated over all possible xi (i.e., over all
possible memory-strength values for a filler) is given by:

1ffiffiffiffiffiffiffiffiffiffi
2πσ2

p
Z þ∞

−∞
e− x1−μ1ð Þ2= 2σ21ð Þ Yk

j¼2

Φ
x1−μ1
σ1

� �
1−Φ

c−x1
σc

� �� �
dx1:

Again, this is the likelihood of observing a filler ID
from a target-absent lineup.
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