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Abstract

media such as graphs, maps, signs, and artifacts.

People interpret abstract meanings from colors, which makes color a useful perceptual feature for visual communication.
This process is complicated, however, because there is seldom a one-to-one correspondence between colors and
meanings. One color can be associated with many different concepts (one-to-many mapping) and many colors can
be associated with the same concept (many-to-one mapping). We propose that to interpret color-coding systems, people
perform assignment inference to determine how colors map onto concepts. We studied assignment inference in the
domain of recycling. Participants saw images of colored but unlabeled bins and were asked to indicate which bins they
would use to discard different kinds of recyclables and trash. In Experiment 1, we tested two hypotheses for how people
perform assignment inference. The local assignment hypothesis predicts that people simply match objects with their most
strongly associated color. The global assignment hypothesis predicts that people also account for the association strengths
between all other objects and colors within the scope of the color-coding system. Participants discarded objects in bins
that optimized the color-object associations of the entire set, which is consistent with the global assignment hypothesis.
This sometimes resulted in discarding objects in bins whose colors were weakly associated with the object, even when
there was a stronger associated option available. In Experiment 2, we tested different methods for encoding color-coding
systems and found that people were better at assignment inference when color sets simultaneously maximized the
association strength between assigned color-object parings while minimizing associations between unassigned pairings.
Our study provides an approach for designing intuitive color-coding systems that facilitate communication through visual
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Significance

This article examines how people interpret messages
encoded in color-coding systems. Such systems are
prevalent in a variety of domains: in hospitals, where
syringe colors code for different classes of anesthetic
drugs and wristband colors code for different kinds of
patient risks; in animal shelters, where cage sign colors
indicate how challenging the animal is to handle; and in
recycling, where bin colors code for different kinds of
objects to be discarded. Color is a useful visual feature
for communicating because it can be observed quickly
from a distance and it can signal a variety of messages,
ranging from “approach this animal with caution,” to
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“put paper in this bin.” However, with no one-to-one
mapping between colors and concepts, how can mes-
sages be most effectively and efficiently encoded in
colors? We addressed this question by investigating how
observers interpret color-coding in recycling. We found
that people have expectations for how different colored
bins signal different kinds of to-be-discarded objects
(e.g. paper, glass, trash), based on their color-object
associations and contextual cues from other colors in
the set. They responded as though they were solving
a global assignment problem, which optimizes the
color-object associations of the entire set. By under-
standing the principles by which people map percep-
tual features onto abstract concepts, we can use those
principles to make visual communication more effect-
ive and efficient.
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Background

People can interpret complex messages encoded in vis-
ual features. They know red splotches on a weather map
signal impending storms, red traffic lights signal stop,
and red milk cartons signal that the container holds
whole milk. Given this ability, people use colors to
communicate important and time-sensitive information.
For example, a recent surgical protocol for separating
conjoined twins used green and purple tape to signal
which monitors and equipment were dedicated to each
twin (Associated Press, 2017), presumably so they did
not get mixed up during surgery.

Color is one of many visual features that can be used to
communicate abstract information, with others including
size, texture, orientation, and shape (Bertin, 1983; Ware,
2012). However, color is especially useful for signaling be-
cause it can be observed quickly from a distance and it
provides meaningful information that is independent from
spatial structure. In nature, changes in face color can
signal changes in emotional state independent of facial
features and changes in fruit color signal ripeness inde-
pendent from changes in shape (Lafer-Sousa, Conway, &
Kanwisher, 2016; Thorstenson, Elliot, Pazda, Perrett, &
Xiao, 2017). In human-made artifacts, differences in font
color can signal different meanings in signs and maps
without affecting legibility of the text. People even make
inferences about student ability and teacher competence
based on the ink color used to provide feedback on essays
(Richards & Fink, 2017). Most relevant to the present
study, differences in surface colors can signal different
kinds of recycling bins without interfering with the ability
to insert objects into the bins.

Yet, interpreting colors is complicated because there is
no one-to-one correspondence between colors and con-
cepts (Fig. la) in nature or the human-made world
(Elliot & Maier, 2012; Humphrey, 1976; Lin, Fortuna,
Kulkarni, Stone, & Heer, 2013; Setlur & Stone, 2016).
There are one-to-many mappings (Fig. 1b), in which the
same color is associated with multiple concepts (e.g. red
associated with ripe apples, strawberries, fire, the US

Republican Party, and the University of Wisconsin—
Madison) and many-to-one mappings (Fig. 1c), in which
many colors are associated with the same concept
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Figure 1 Mappings between colors (squares) and concepts (circles)
that are a one-to-one, b one-to-many, and ¢ many-to-one
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(shades of reds, yellows, and greens associated with ripe
apples) (Schloss & Heck, 2017). How, then, do observers
interpret reliable and meaningful signals from colors?

We addressed this question by investigating how ob-
servers interpret colors in color-coding systems designed
for visual communication. When people attempt to com-
municate through visual media (e.g. graphs, maps, signs,
and artifacts), two distinct tasks emerge. There is an encod-
ing task, in which designers' select perceptual features to
signify concepts for a design, and a decoding task, in which
observers interpret how perceptual features map onto con-
cepts in the design (Cleveland & McGill, 1984; Wood,
1968). Ideally, observers will be able to decode the same
message that was encoded by the designer.

This decoding ability depends on the degree to which
encodings match people’s predicted mappings, or expecta-
tions (Norman, 1988, 2013; Tversky, 2011; Tversky,
Morrison, & Betrancourt, 2002; Zacks & Tversky, 1999).
For example, observers are faster at interpreting bar
graphs depicting fruit sales when the bar colors match the
colors of the fruit they represent (e.g. banana — yellow,
blueberry — blue) than when they mismatch (e.g. banana
— orange, blueberry — green) (Lin et al,, 2013). One might
argue that if color-coding systems are clearly labeled, then
interpreting those systems is trivial—you just look up the
answer. However, Lin et al. (2013) demonstrated that
there is a processing cost to interpreting color-coding
systems (even with clear labels) if they do not correspond
to people’s predictions for how colors should map onto
concepts. The question is, what determines people’s
predicted mappings for color-coding systems?

We approach this question by considering visual
communication as a set of assignment problems. In
optimization and operations research, assignment
problems (also known as maximum-weight matching
problems) are mathematical models that describe how to
pair items from two different categories (Kuhn, 1955;
Munkres, 1957). Examples include optimally assigning
employees to jobs in a company, machines to tasks in a
factory, and trucks to routes in a shipping network
(Williams, 2013; Winston & Goldberg, 2004).

Here, we consider two types of assignment problems for
generating and interpreting color-coding systems, which
correspond to the encoding and decoding tasks described
above: encoding assignment problems and decoding assign-
ment problems. Although we focus on color-coding sys-
tems here, the principles can generalize to any coding
system in which concepts map onto perceptual features.

Encoding assignment problem

Designers can use encoding assignment problems to
generate color-coding systems by determining optimal
assignments between colors and concepts. Figure 2a il-
lustrates an encoding assignment problem as a bipartite
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A Encoding Assignment Problem
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Fig. 2 Bipartite graphs illustrating color-object assignments. a In encoding, the designer determines optimal assignments between colors and
objects, given the merit scores. Here, there are more colors than objects. Black edges represent assigned color-object pairs and gray edges represent
unassigned color-object pairs. b In decoding, observers try to infer how the designer encoded color-object assignments. Dashed black edges represent
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graph. There are 37 colors (denoted using index ie{1, ...,
37}) and six objects (denoted using index je{1,...,6}).
Here, and henceforth, we typically refer to "objects" in-
stead of "concepts" because the focus of this paper is on
color-coding systems for objects to be discarded in trash
and recycling bins. The choice of numerical labels is ar-
bitrary and only serves to simplify the explanation. Each
potential pairing (i, /) has a corresponding merit score,
m;j, which quantifies the desirability of pairing i with j,
computed using a merit function. Merit scores can be
thought of as weights on each of the edges of the graph
in Fig. 2a.

Solving an encoding assignment problem means to
select a subset of the edges such that each object is
assigned to exactly one color and the sum of merit scores
along selected edges is maximized. In Fig. 2a, each
assigned color-object pair is represented by a black edge
and each unassigned color-object pair is represented by a
gray edge. The optimal assignment will depend on the
particular choice of merit scores.”

Lin et al. (2013) used this kind of approach to study
how the association strength between colors and con-
cepts influenced people’s ability to interpret color-coding
systems in bar graphs. To encode the color-concept pair-
ings for their test stimuli (e.g. graphs of fruit sales), they
first obtained frequency distributions of colors in Google
Image Search for a series of concepts (e.g. fruits) and
then interpreted the resulting color-concept histograms
as probability distributions. The authors then computed
a merit function, called an affinity, by weighting each
probability of a color occurring for a given concept by
the inverse of the entropy of that color’s probability dis-
tribution across all concepts. This approach rewards
strong color-object associations for the intended pairing
while penalizing the associations of unintended pairings.
Another way to achieve this qualitative property is to
use the pointwise mutual information, another

information-theoretic quantity, as a merit function
(Setlur & Stone, 2016).

Decoding assignment problem

We propose that when people interpret color-coding
systems, they solve a decoding assignment problem. To
do so, they make inferences about how the designer had
mapped colors onto concepts while generating the
color-coding system. In the decoding assignment prob-
lem in Fig. 2b, there are six colors and six objects that
have been selected by the designer in the encoding
assignment problem (Fig. 2a). The observer’s task is to
infer the encoded assignments (dashed black lines), but
how might they go about doing so?

Color Inference Framework

The Color Inference Framework (Schloss, in press) pro-
poses that people make inferences about colors (color in-
ferences) based on an internal representation of color-
concept associations that is stored in their minds. There
are different kinds of color inference processes that oper-
ate on the same internal representation, which are modu-
lated by perceptual context (e.g. colors in a color-coding
system) and conceptual context (e.g. concepts in a color-
coding system). Here, we aim to understand the assign-
ment inference process for interpreting mappings between
colors and concepts, which we believe enables people to
solve decoding assignment problems.

We studied assignment color inference in the domain of
recycling, where the color-coding system mapped different
colored bins to different kinds of objects to be discarded.
As described below, our approach was to manipulate in-
put into the color inference system (i.e. the colors people
saw in the experiments), measure the output of the system
(i.e. people’s interpretations of how colors mapped onto
objects to be discarded in our recycling task), and use
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those measures to evaluate hypotheses about how people
make assignment color inferences.

Input for assignment inference

We selected the colors for each experiment based on
color-object association ratings obtained from 49 partici-
pants in a pilot experiment (see Additional file 1 for
methodological details). In short, participants rated how
strongly they associated each of the Berkeley Color Pro-
ject 37 (BCP-37) colors (Palmer & Schloss, 2010;
Schloss, Strauss, & Palmer, 2013) with each of six objects
related to recycling: paper, plastic, glass, metal, compost,
and trash. Approximations of the colors are shown in
Fig. 3 and the CIE 1931 xyY coordinates are in
Additional file 1: Table S1). The mean association ratings
are displayed in Fig. 4, with the colors sorted from least
associated to most associated with each object. We
describe the details of how we selected the colors for
Experiment 1 and Experiment 2 within the sections on
each experiment below.

Output for assignment inference

To assess participants’ interpretations of how colors
mapped onto objects to be discarded, we devised a re-
cycling classification task. Participants saw images of un-
labeled colored bins along with the name of object to
discard (e.g. paper or trash) and they reported which
colored bin was the correct one for discarding the
object. It has previously been established that asking
participants to interpret messages encoded in unlabeled

Fig. 3 The BCP-37 colors: eight hues (feft to right: Red, Orange, Yellow,
cHartreuse, Green, Cyan, Blue, and Purple) sampled at four saturation/
lightness levels (top to bottom: Saturated, Light, Muted, and Dark), plus
five achromatic colors (bottom row from left to right: black (BK), dark
gray (A1), medium gray (A2), light gray (A3), and white (WH). Colors in
the figure are for illustration only and are not colorimetrically accurate.
See Additional file 1: Table S1 for coordinates in CIE 1931 xyY space
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perceptual features reveals how observers extract mean-
ing from visual media (Zacks & Tversky, 1999).

Hypotheses about assignment color inference

We proposed and evaluated two hypotheses about how
people perform assignment color inference. When
people are given a single object and are asked to map it
onto one color from a given set of colors, the local as-
signment hypothesis predicts that they simply match the
object with its most strongly associated color. This
means that two different objects could be mapped to the
same color if that color is the strongest associate for
both objects. In contrast, the global assignment hypoth-
esis predicts that people not only consider the associ-
ation strength between the object and candidate colors,
but also account for the association strengths between
all other objects and colors within the scope of the
color-coding system. This can result in pairing colors
with objects that are weakly associated if it results in
better overall pairings for all objects considered.

In this study, we investigated assignment color infer-
ence in two experiments. Experiment 1 tested whether
people perform local or global assignment in a simple
scenario with two objects (paper and trash) and sets of
two colors. We chose paper and trash because the colors
most associated with these objects are distinct (see Fig. 4
and Additional file 1: Table S2). This avoids conflicts
that arise from one-to-many and many-to-one mappings
and therefore makes the task relatively easy, at least
when one of the colors is strongly associated with paper
and the other is strongly associated with trash. Experi-
ment 2 tested whether people can still perform assign-
ment inference with a larger set of six objects and six
colors that contain conflicts due to one-to-many and
many-to-one mappings. These conflicts make the task of
selecting which six colors to use a nontrivial one. We
determined which colors to use by designing different
merit functions and solving the corresponding encoding
assignment problems.

Experiment 1

In Experiment 1, we compared the local assignment and
global assignment hypothesis predictions for a simple case
of discarding one of two kinds of objects into one of two
unlabeled colored bins. Participants saw images of colored
bins along with a description of a target object (paper or
trash) and indicated which bin was appropriate for dis-
carding the target object. We only tested paper and trash
in this experiment because among all pairs of objects, this
pair has the most different pattern of color-object associ-
ation ratings, determined by the pilot experiment de-
scribed above (also see Additional file 1: Table S2). We
tested all pairs of four colors: the two colors that were
most strongly associated with paper (white; WH) and
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Fig. 4 Mean color-object association ratings for paper, plastic, glass, metal, compost, and trash. Colors are sorted along the x-axis from most
weakly associated to most strongly associated with each object. Bar colors represent the colors that were judged (also see x-axis label and
corresponding coordinates in Additional file 1: Table S1). Error bars represent the + standard errors of the means. See Additional file 1 for details
on how the data were collected

trash (dark-yellow; DY) and two colors that were most
weakly associated with paper (saturated-red; SR) and trash
(saturated-purple; SP), see Fig. 4. Analyses verified that
the “strong” color-object associations were stronger than
the “weak” ones (see Additional file 1: Table S3).

Figure 5 illustrates the local and global assignment hy-
potheses for two color sets. Each panel contains two
parts. The top part contains a bipartite graph showing
the predicted assignments (thick black lines) between
two possible objects (paper (P) and trash (T); circles)
and two possible colored bins (squares). The bottom
part shows the corresponding example trial, with a red
arrow showing the predicted response.

The blue region in Fig. 5 represents the scope of
objects and colors that serve as input into the assign-
ment problem within each hypothesis. For the local
assignment hypothesis, only the target object for the
particular trial (in this case, trash) is in the scope and
the other, non-target object (in this case, paper) is
outside the scope. As a result, the target object al-
ways gets discarded into the bin whose color is most
strongly associated with it, regardless of the associ-
ation strength between the colors and the non-target
object. As shown in Fig. 5a, trash should go in the
dark-yellow bin when the color options are white and
dark-yellow, and as shown in Fig. 5b trash should go
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Fig. 5 lllustration of the assignment inference process for two objects and two colors, under the local assignment (a and b) or global assignment
(c and d) hypotheses. Thick black lines represent assigned color-object pairings and thin gray lines represent unassigned color-object pairings.
Under local assignment, the target object (trash) is matched with its strongest associate (association ratings indicated on the graph edges). This
means assigning trash to DY in the WH/DY color set (a) and assigning trash to WH in the WH/SP color set. Under global assignment, the target is
matched by accounting for the association strengths of both objects and both colors. This means assigning trash to DY in the WH/DY color set
(c) as in (a), but assigning trash to SP in the WH/SP color set (d), even though trash has a higher association rating with WH than with SP

in the white bin when the options are white and
saturated-purple.

For the global assignment hypothesis, both the target
and non-target are within the scope of the assignment
problem. As a result, the target object gets discarded
into the bin that allows for maximization of the total
association strength over all possible color-object pair-
ings. In Fig. 5c¢, the solution is the same as in the local
assignment hypothesis (Fig. 5a), with trash going in the
dark-yellow bin. However, in Fig. 5d, the solution con-
flicts with that of the local assignment hypothesis
(Fig. 5b). Trash gets discarded in the saturated-purple
bin even though trash is more strongly associated with
white than with saturated-purple, because the global as-
signment specifies that white should be reserved for
paper.

In this experiment, we quantified the predictions of the
local and global assignment hypotheses and evaluated
which predictions better capture participant responses.

Methods

Participants

There were 24 participants (mean age = 18.8, 17 women).
All had normal color vision as screened using the H.R.R.
Pseudoisochromatic Plates (Hardy, Rand, Rittler, Neitz, &
Bailey, 2002), and all gave informed consent.> The Univer-
sity of Wisconsin—Madison IRB approved the experimen-
tal protocol.

Design and displays

As shown in Fig. 5, the displays contained images of two
colored bins, one on the left and one on the right of the
screen. The bins were 3.25 cm wide x 4.25 c¢cm tall and
were viewed from a distance of approximately 60 cm.
Participants saw all six pairwise combinations of four
colored bins (referred to as “color sets”). The colors were
those that were most strongly associated with paper
(white; WH) and trash (dark-yellow; DY), and the colors
that were most weakly associated with paper (saturated-
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red; SR) and trash (saturated-purple; SP). The CIE 1931
xyY coordinates of the colors are listed in Additional file 1:
Table S1. The colored bins were left/right balanced across
trials. There was text at the top of the screen that indi-
cated which target object was to be discarded on each trial
(paper or trash). The full design included 6 color sets x 2
left/right color-bin assignments x 2 target objects x 6 rep-
lications, resulting in 144 trials.

The displays were presented on a 24.1-in. ASUS
ProArt PA249Q monitor (1920 x 1200 resolution). The
background was a medium gray (CIE x=0.312, y=
0.318, Y =19.26) that approximated CIE Illuminant C.
We characterized the monitor using a Photo Research
PR-655 SpectraScan® spectroradiometer and used it to
verify accurate presentation of the colors. The deviance
between the measured colors and target colors in CIE
xyY coordinates was < 0.01 for x and y, and < 1 cd/m? for
Y. The experiment was programmed using Presentation
(www.neurobs.com).

Procedure

Participants were asked to imagine they had paper and
trash to throw away and they wanted to figure out where
the objects should be discarded. On each trial, there was
text at the top of the screen indicating which object to
discard on that trial (paper or trash), with a pair of col-
ored bins below (Fig. 5). Participants indicated whether
the object should be discarded in the left or right bin by
pressing the left or right arrow key. Before the test trials,
there were five practice trials. If participants asked ques-
tions about which bin they should choose, they were told
to follow their intuition. The trials were presented in a
random order separated by a 500-ms inter-trial interval.
The participants were given a break after each set of 20
trials.

Results and discussion

We generated predictions for the local and global assign-
ment hypotheses using the color-object associations data
from the pilot experiment described in Additional file 1
and shown in Fig. 4. To solve an assignment problem
under the local assignment hypothesis, we simply match
each object with its highest rated color. Under the global
assignment hypothesis, we consider both objects and
both colors together and pick the pairings that yields the
largest total association rating.

One approach for generating these predictions might
be to solve assignment problems under each hypothesis
by calculating merit scores using the mean color-object
association ratings presented in Fig. 4. This approach
would be problematic because solving an assignment
problem is a deterministic and absolute procedure. This
means that if the outcome (e.g. whether “Trash” gets
assigned to dark-yellow or saturated-red) hinges on
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whether one merit score is greater than another, the re-
sult will be the same regardless of whether the difference
between these merit scores is large or small. However,
we want predictions that reflect the sensitivity of out-
comes to small changes in the merit scores.

To produce predictions with this sensitivity property,
we used a sampling approach. We describe the sampling
procedure for generating predictions in detail in Add-
itional file 1. Roughly, we added small random perturba-
tions to the association ratings in Fig. 4, solved the
assignment problem using the perturbed values, re-
peated a large number of times, and then averaged all of
the outcomes. This procedure has the desired effect be-
cause when association ratings are very different, adding
small perturbations has little influence on the outcome
of the assignment problem. However, when two associ-
ation ratings are similar, perturbing them will sometimes
cause a reversal in which association rating is largest and
yield a different solution to the assignment problem. Re-
peating many times produces a distribution of outcomes
that reflects the magnitude of the differences between
merit scores. This approach should approximate the un-
certainty in human judgments when different objects
have similar color-object associations.

Figure 6 shows the predictions of the local assignment
hypothesis (Fig. 6a) and the global assignment hypoth-
esis (Fig. 6b). It also shows the mean proportion of trials
(out of 12) that participants chose each color within
each color set for each object (Fig. 6¢). The pattern of
average responses across all objects and color sets was
correlated with the predictions of the local assignment
hypothesis (r(22) =0.668, p <0.001) and the global as-
signment hypothesis (r(22) =0.991, p<0.001), but the
correlation with the global assignment hypothesis was
significantly stronger (z=6.13, p<0.001). There are
cases where the global and local assignment hypotheses
make similar predictions, but where their predictions di-
verge, participants’ judgments appear to be more con-
sistent with global assignment.

We also compared the two hypotheses at the individual
participant level by conducting logistic regressions® to pre-
dict each participant’s response on each trial using the pre-
dictions under each hypothesis and comparing the model
fits across participants. We coded responses as 1 = left color
chosen and 0 = right color chosen (12 trials in color set per
object per participant).” We coded predictors for the local
and global assignment hypotheses as the probability of
choosing the left color, using the values from Fig. 6a and b,
respectively. For 18 out of 24 participants, the beta weights
for the global assignment model were higher than the beta
weights for the local assignment model. A sign test indi-
cated that this distribution is significantly different from
chance (p=0.023), indicating that the global assignment
hypothesis better predicted participant responses.
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mean response times (RTs) plot for each object within each color set. Error bars represent + the standard errors of the means

The results of this experiment demonstrate that peo-
ple’s interpretations of the meanings of colors are highly
context-dependent. They change from trial to trial, de-
pending on the other colors in the scene. For example,
participants almost always responded that red was cor-
rect for paper when paired with dark-yellow, almost
never responded that red was correct for paper when
paired with white, and responded near chance (0.5)
when saturated-red was paired with saturated-purple
(Fig. 6¢).

Further, the results demonstrate that people can ac-
curately interpret encoded assignments when none of
the colors are strongly associated with the target ob-
ject. They can do so as long as one of the colors is
associated with the non-target object (at least when
there are only two objects). For example, saturated-
purple and dark-yellow are similarly weakly associated

with paper (see Fig. 4 and Additional file 1: Table
S2), yet participants systematically reported that satu-
rated purple was the color for paper in SP/DY trials.
They can do so because dark-yellow is strongly asso-
ciated with trash (the non-target object for that trial),
and solving the assignment problem tells them if
dark-yellow is for trash, then saturated-purple must
be the color for paper.

Although people can solve decoding assignment prob-
lems when both colors are weakly associated with the tar-
get, the response time (RT) data suggest doing so is more
difficult compared to cases when one of the colors is
strongly associated with the target (Fig. 6d). We analyzed
the RT data by first calculating the median RT across all
12 trials within each condition. Figure 6d shows the mean
of these median RTs across subjects for each condition,
categorized as “Target strong” (one of the colors was
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strongly associated with the target) or “Target weak” (both
colors were weakly associated with the target). RTs were
significantly faster for the Target strong conditions (£(23)
=5.26, p<0.001, d,=1.07), suggesting there is indeed a
processing cost to solving the assignment problem when
all of the colors are weakly associated with the target.

In summary, Experiment 1 provided evidence that par-
ticipants approached interpreting the color-coding sys-
tem in our task as a global assignment problem; they
determined which assignments between colors and ob-
jects optimized the color-object associations of the en-
tire set. This process sometimes resulted in observers
interpreting that objects were intended to be assigned to
colors that were their weakest associates, even when
there was a stronger associate on the screen. However,
there was a processing cost when the target did not have
a strongly associated color in the color set.

Experiment 2
In Experiment 1, we found evidence that people interpret
color-coding systems by solving a decoding assignment
problem with a global scope. Decoding was somewhat
straightforward when there were only two objects and two
colors. However, decoding becomes more complicated
when there are several objects and colors and there are
conflicts arising from one-to-many and many-to-one
mappings. This is the case for the objects we studied in
Experiment 2: paper, plastic, glass, metal, compost, and
trash. As shown in Fig. 4 and Additional file 1: Table S2,
color-object associations were very similar among paper,
plastic, and glass, and among trash and compost.
Generally, a color-coding system should be easier to de-
code if: (1) each object has a color that is strongly associ-
ated with it; and (2) each object has only one color that is
strongly associated with it. When these objectives are
competing, we must choose how to prioritize one over the
other. We tested two different color sets that were se-
lected using two different merit functions: an isolated
merit function and a balanced merit function. These merit
functions trade off the relative weight placed on (1) and
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(2). We also tested a third set of colors that were selected
using a baseline merit function, which attempts to select
colors that are each equally associated with all the objects,
thus maximizing confusion for the participants.

We tested the color sets above for two tasks. The
“select task” asked participants to discard only one ob-
ject into one of six bins on each trial (analogous to Ex-
periment 1). The “match task” asked participants to
simultaneously assign all six objects to six colors in a
one-to-one manner. The match task can be viewed as a
more sensitive measure of how well people decode the
color-coding system because participants are explicitly
asked to solve an assignment problem.

Methods

Participants

There were 96 participants divided into four groups (1 = 24
per group, mean age = 19.0, 51 women), constructed from
the orthogonal combination of two between-subjects fac-
tors (further detailed below): Task (select, match) x Opti-
mized Color Set Group (isolated group, balanced group).
All participants had normal color vision (screened using
the H.R.R. Pseudoisochromatic Plates) and gave informed
consent. The University of Wisconsin—-Madison IRB ap-
proved the experimental protocol.

Design, displays, and procedure
All participants saw two Color Set Types, an optimized
color set and a baseline color set (Fig. 7). There were six
bins within each color set, which corresponded to the
six possible target objects: paper, plastic, glass, metal,
compost, and trash. The bins were displayed in a row
with six possible orders (left to right). The orders were
defined by a Latin square design, ensuring that each bin
color appeared equally often in each position, and all bin
colors appeared equally often to the left/right of every
other color. We did not test all possible orderings be-
cause of the combinatorial explosion.

Between subjects, there were two Optimized Color Set
Groups, which determined the colors that were in the

Isolated Group

Optimized
Colors

Baseline
Colors

Fig. 7 The color conditions in Experiment 2. Participants were divided into two Optimized Color Set Groups (Isolated Group and Balanced
Group). Each group saw two color sets, an optimized color set (isolated or balanced) and the baseline color set

Balanced Group
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optimized color set (Fig. 7). Participants in the Isolated
Group saw optimized colors that were selected using the
isolated merit function and participants in the Balanced
Group saw optimized colors that were selected using the
balanced merit function. All participants saw the same
baseline color set, selected using the baseline merit func-
tion. We varied optimized color sets between subjects be-
cause there were some overlapping colors between the two
sets and we wanted to compare color sets generated using
different merit functions without carryover effects across
conditions.

We generated the colors for each color set by solving an
encoding assignment problem as a linear program (Wil-
liams, 2013) using Matlab’s linprog function for each merit
function. Using this approach, it takes <30 ms to solve
one assignment problem on a conventional laptop.

Isolated merit function
The isolated merit function is perhaps the most straight-
forward merit function for color-object assignments. It
maximizes the color-object associations among all chosen
color-object pairs. We call it the isolated merit function
because it isolates the strongest association, ignoring the
association strength between all unpaired colors and
objects. So, if a;; is the mean color-object association rat-
ing of color i with object j (see Fig. 4), we would use
Mij = djj. (1)
This function ensures that items are paired with their
strongest associate, under the constraint that no color is
assigned to more than one object. This can be observed
in the color-object association matrix in Fig. 8a, where
the assigned color-object pairs (diagonal of the matrix)
have very strong color-object associations. However,
using the isolated merit function can be problematic if
some colors are strongly associated with multiple objects
(one-to-many mappings) or multiple colors are associ-
ated with the same objects (many-to-one mappings). As
shown in Fig. 8a, there are similar color-object associa-
tions among paper, plastic, and glass, and among
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compost and trash (strong associations off the diagonal
of the matrix). This might lead to confusion in how to
infer the correct assignments.

Balanced merit function
The balanced merit function mitigates conflicts due to
one-to-many and many-to-one mappings by simultan-
eously maximizing the association between all paired
items while minimizing the association between unpaired
items. For example, if we assign color 9 to category 4, then
we want dgy to be large (correct assignment) and ao1, doy,
a3, dos, dog to be small (incorrect assignments). If, for in-
stance, ags were also large, then the observers might be
confused and not know whether object 4 or 5 is the best
match for color 9. In defining the balanced association
merit function, we used
Mij = @;j—T MAXp jik. (2)
Here, the “max” is taken over all ke{1,...,6} except
for k = j. In other words, we subtract from each color-
object association rating the largest color-object associ-
ation rating among remaining pairings between that
color and all other objects. The parameter 7>0 controls
the degree to which we penalize strong associations be-
tween unpaired colors and objects. When r = 0, we re-
cover the isolated merit function m;; = a;;. Increasing
increasingly penalizes the biggest mismatch (the most
confusing incorrect pair). The balanced merit function is
defined as Eq. 2 when 7 = 1.° As shown in Fig. 8b, opti-
mizing the balanced merit scores can lead to assigned
color-object pairs that are not as strongly associated as
they could be (weaker diagonal in the matrix), at the
benefit of ensuring that associations between non-
assigned color-object pairs is weak (weaker associations
off the diagonal of the matrix).

Baseline merit function

As a baseline, we defined a merit function that we
thought would cause people to respond at chance. There
are many ways to achieve this, but the overarching

A Isolated Color Set B Balanced Color Set C Baseline Color Set
mimE 1] DR mE CIELT Tsi
Paper (M Paper [HI| Paper f|_|
Plastic O 1.0 Plastic 1.0 Plastic O 1.0
Glass Il 05 Glass O . Glass O 05
Metal Metal Metal O
Compost i 0.0 Compost 0.0 Compost 0.0
Trash | Trash Trash
Fig. 8 Color-object association matrices for all color-object pairs within each of the three color sets: (a) isolated, (b) balanced, and (c) baseline.
Data are from the pilot experiment reported in Additional file 1 and are also shown in Fig. 4. The diagonal of each matrix indicates the encoded color-
object assignment (correct answer) for each object




Schloss et al. Cognitive Research: Principles and Implications (2018) 3:5

criterion is that no object-color pair is a clear best
choice; there are always competing choices. We used a
merit function that ensures that for any object-color
pairing, the association rating for the pair is comparable
to the best association rating achievable by swapping the
current object for a different one. Mathematically, the
merit function is defined by:

m,»,' = —|Lli]'— maxk¢jaik|. (3)

As shown in Fig. 8c, the color-object association rat-
ings are similarly low for all color-object pairings in the
baseline set.

We did not use information-theoretic merit functions
as were used by Lin et al. (2013) or Setlur and Stone
(2016) because our input data (color-object association
ratings; Fig. 4) are not probabilistic in nature. Although
it might be possible to reweight our input data, interpret
them as empirical probability distributions, and con-
struct affinity scores similar to Lin et al. (2013) or Setlur
and Stone (2016), we instead constructed deterministic
metrics, which have similar qualitative properties but
have a more natural interpretation in the context of our
input data.

In Experiment 2, we also tested two different tasks
that varied between-subjects: select task and match task
(Fig. 9). The monitor type and calibration procedure for
both tasks were the same as in Experiment 1.

Select task

The select task was analogous to Experiment 1. On each
trial, participants saw the name of one target object at
the top of the screen and six bins in a row below (num-
bered 1 to 6) (Fig. 9a). They were asked to discard the
object into one of the bins by pressing the correspond-
ing number key at the top of the keyboard. Each partici-
pant completed 144 trials, resulting from the orthogonal
combination of 2 color set types (optimized, baseline) x
6 objects to discard (paper, trash, glass, plastic, metal,
compost) x 6 color bin orderings on the screen x 2 repli-
cations. Each trial was separated by a 500-ms inter-trial
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interval and participants received breaks after each set
of 20 trials.

As in Experiment 1, participants could do this task by
putting multiple objects in the same colored bins (no
one-to-one constraint) and there was no requirement to
account for the objects that were not queried on a par-
ticular trial when selecting a color. However, the global
assignment hypothesis predicts that participants would
take all objects into account, even though they were only
judging one object at a time.

Match task

In the match task, participants were presented with all
six objects simultaneously and were asked to match
them with each of the six bins in a one-to-one manner
(Fig. 9b). This task explicitly required participants to
solve a decoding assignment problem. The displays in
the match task were similar to the select task, except
there were no numbers under the bins, and instead of
text describing one object at the top of the screen, there
was a list of all six objects (presented in a random order
on every trial). Participants discarded each object into a
bin by: (1) clicking on the object name to pick up the
text; (2) moving the mouse to slide the object name
onto a bin; and (3) clicking to drop the object in the
bin. Once the object was dropped, its name appeared
below the bin. Participants could change the object’s lo-
cation after it had been dropped, by clicking on the
name to return to its former position at the top of the
screen, and then repeating the drag-and-drop proced-
ure to place it in a different bin. Once participants were
satisfied with their placement of all six objects, they
pressed ENTER to go onto the next trial. Each partici-
pant completed 48 trials from the orthogonal combin-
ation of 2 color set types (optimized, baseline) x 6 color
orderings x 2 replications. Within each trial, they
matched each of six target objects, so the resulting
dataset was analogous to the select task.

Results and discussion
Figure 10a shows the mean proportion of correct trials
each Color Set Type (optimized, baseline) for

A

Fig. 9 Example trials in the (a) select task and (b) match task in Experiment 2
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Fig. 10 a Mean proportion of correct responses for the optimized color sets (closed symbols) and baseline color sets (open symbols) for
participants in the isolated group and balanced group (x-axis), separated by participants in the match task (circles) and select task (squares). The
horizontal line at 1/6 (approximately 0.17) represents chance. b Mean RTs for the optimized color sets (closed symbols) and baseline color sets
(open symbols) for participants in the isolated group and balanced group (x-axis), separated by participants in the match task (circles) and select
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participants in each Optimized Color Set Group (iso-
lated, balanced) in each Task (select, match). Recall that
each Optimized Color Set group saw different opti-
mized color sets determined by the isolated and bal-
anced merit functions but saw the same baseline color
set (Fig. 7). The horizontal gray line represents chance (1/
6; given six color options per trial). As expected, responses
in the baseline condition did not significantly differ from
chance (select task — isolated group: #(23)=-1.66, p =
0.111; select task — balanced group: #(23) = 0.24, p = 0.810;
match task — isolated group: #(23) = 0.54, p = 0.592; match
task — balanced group: £(23) = —0.55, p = 0.590).

We analyzed the accuracy data in Fig. 10a using
mixed-effects logistic regression. Each trial was coded
such that correct=1 and incorrect=0 (see Fig. 7 for
specification of correct color-object pairings). The
fixed effects were: Color Set Type (optimized vs
baseline; within-subjects), Optimized Color Set Group
(isolated vs balanced; between subjects), and Task
(select vs match; between subjects), and their inter-
actions. The random effects were random intercepts
for subjects and random slopes for subjects for
Color Set Type.

Overall, there were significant effects of Color Set
Type (=1.99, z=12.76, p<0.001), Optimized Color
Set Group (8 =0.52, z=3.29, p<0.001), and Task (5=
0.46, z=2.88, p=0.004). Accuracy was greater for the
optimized color sets than the for baseline color set,
for participants in the balanced group than in the iso-
late group, and for participants in the match task
than in the select task. However, Color Set Type
interacted with Optimized Color Set Group (5 =0.94,
z=3.02, p=0.003) and with Task (5=0.79, z=2.54, p
=0.011), and there was a three-way interaction (=
1.50, z=2.44, p =0.015).

To understand these interactions, we conducted a
similar analysis, but separated the data for each task. As
shown in Fig. 10a, responses were more accurate for the
optimized color set than for the baseline color set within
both the select task (8=1.58, z=8.55, p<0.001) and
match task (8=246, z=9.32, p<0.001). Within the
match task, Color Set Type interacted with Optimized
Color Set Group (5=1.79, z=3.40, p <0.001), revealing
a benefit of optimizing using balanced merit function
compared to the isolated function. There was no such
interaction for the select task (5=0.18, z=0.50, p =
0.62), which suggests balanced optimization may not
benefit performance when participants are only consid-
ering one object at a time.

Figure 10b shows mean RTs for each condition, re-
gardless of whether responses were accurate. As in Ex-
periment 1, we first calculated the median RT across the
replications for each participant within each condition
and conducted the analyses on those medians. We con-
ducted separate analyses for the select and match tasks
because they were not directly comparable—the select
task involved discarding one object per trial, whereas the
match task required assigning each of six objects to a
unique color on each trial. Within each task, we con-
ducted a 2 Color Set Types (optimized, baseline; within-
subject) x 2 Optimized Color Set Group (isolated, bal-
anced; between-subject) mixed-design ANOVA. Overall,
RTs were faster for the optimized color sets than the
baseline color sets within the select task (F(1,46) = 22.93,
p<0.001, 1112, = 0.33) and match task (F(1,46) =8.23, p =
0.006, 17127 = 0.15). There was no effect of Optimized

Color Set Group for (Fs< 1) and no interaction (Fs < 1)
for either task. These results suggest there were greater
processing costs for trying to interpret the encoded
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color-object assignments for the baseline color sets than
for the optimized color sets, regardless of the merit
function used to optimize the color sets or the task.
Thus far we have focused on the responses averaged
over objects. Now we examine the data separated by ob-
ject. Figure 11 shows predicted responses and actual re-
sponses for each of the six objects for each optimized
color set and task. We generated predictions based on
the global assignment hypothesis for all six objects with
each color set using the same procedure described in Ex-
periment 1 and the Additional file 1.” Figure 11a shows
the predicted proportion of times each color should be
chosen for each object, within the isolated and balanced
color sets. Figure 11b and c¢ show the mean proportion
of times each color was chosen for each object within
each color set, for the select and match tasks, respect-
ively. The corresponding predictions and data for the
baseline color set are in Additional file 1: Figure S3. As
can be observed in Fig. 11, the model predictions were
strongly correlated with the pattern of responses for
both color sets within each task: select — isolated (r(34)
=0.80, p<0.001), select — balanced (r(34) =091, p<
0.001), match - isolated (r(34)=0.91, p<0.001), and
match — balanced (r(34) =0.96, p<0.001). The strong
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correspondence between the predicted and actual re-
sponses suggests participants could successfully interpret
the encoded color-object assignments.

We also compared the pattern of responses for the se-
lect task (Fig. 11b) and match task (Fig. 11c) within each
color set and found they were strongly correlated (iso-
lated color set: r(34) = 0.90, p < 0.001; balanced color set:
r(34) =0.93, p<0.001). This suggests that participants
generally approached the select task as though they had
to find the best one-to-one correspondences between
colors and objects (as participants in the match task had
to do), even though participants in the select task could
have put multiple object types in the same colored bin if
desired. One notable exception is responses for plastic in
the balanced color set (Fig. 11b). The encoding assign-
ment problem assigned plastic to saturated-red, even
though plastic is weakly associated with saturated-red,
because it is more strongly associated with that color
than any of the other objects are (Fig. 8b). The results
suggest that people could not infer that plastic should be
assigned to saturated-red due to this weak association if
they judged one object at a time in the select task
(Fig. 11b), but they could form that inference when they
completed one-to-one assignments in the match task by
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a process of elimination (Fig. 11c). It is noteworthy that
in the select task, participants did not appear to discard
plastic in the white bin even though plastic is strongly
associated with white (Fig. 8b), presumably because they
were trying to solve an assignment problem with global
scope and white is reserved for paper.

The next analysis aimed at understanding how the pat-
tern of results related to color-object associations. As
shown in Fig. 12, accuracy significantly increased as the
color-object association strength increased. This was
true for both the isolated and balanced color sets within
the select and match tasks. Figure 12 also shows that
RTs for each object decreased as the association strength
between the object and the correct color increased in
the select task. We could not test for a similar trend in
the match task because there were no individual RTs for
each object in the match task.

Although there is a positive correlation between asso-
ciation strength and accuracy for both color sets, this
does not imply that one should maximize association
strength when selecting colors (e.g. isolated merit func-
tion). As seen in Figs. 10a and 12, the balanced color set
achieves a higher accuracy on average than the isolated
color set even though it results in a larger spread of as-
sociation strengths.

In summary, Experiment 2 showed that participants
accurately decoded color-object assignments, even
though there were extensive one-to-many and many-to
one mappings. Participants were better at doing so when
the assignments maximized association strength between
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assigned color-object pairings and minimized association
strength between non-assigned color-object pairings,
even though that required pairing objects with more
weakly associated colors. However, responses were faster
and more accurate when target objects were more
strongly associated with their assigned color.

General discussion

In this study, we investigated how people interpret
color-coding systems used for visual communication.
We approached this question by considering two types
of assignment problems. There is an encoding assign-
ment problem, in which a designer selects which color
to pair with each concept in the color coding system,
and a decoding assignment problem, in which the obser-
ver infers which color the designer paired with each con-
cept in the color-coding system.

In Experiment 1, we used a recycling paradigm to test
two competing hypotheses for how people approach the
decoding assignment problem: the global assignment hy-
pothesis and the local assignment hypothesis. Evidence
supported the global assignment hypothesis. When decid-
ing which colored bin to use for discarding paper or trash,
people not only considered the association strength be-
tween the target object and candidate bin colors, but also
accounted for the association strength between all other
objects and colors within the scope of the color-coding
system. This often resulted in discarding objects into col-
ored bins that were weakly associated, if it resulted in bet-
ter overall pairings for all objects considered.
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In Experiment 2, we used a similar recycling paradigm
with a larger set of objects and colors to test how peo-
ple’s ability to decode color-coding systems is influenced
by the merit functions used to generate the color sets in
the encoding assignment problem. We tested two merit
functions that produced two optimized color sets. The
isolated merit function maximized the association
strength between assigned color object parings with-
out concern for associations between unassigned pair-
ings. The balanced merit function simultaneously
maximized the association strength between assigned
color object parings while minimizing associations be-
tween unassigned pairings. Participants could reliably
interpret both color sets, but they were more accurate
for the balanced color set, primarily in the match
task. These results suggest that it is easier to decode
color-coding systems when they are designed to avoid
strong associations between unassigned color-object
pairs, even if that comes at a cost of reducing the
overall color-object association strength for assigned
color-object pairs.

We note that although we propose that people inter-
pret color-coding systems by solving decoding assign-
ment problems, we do not claim that there is some part
of the brain that performs the same computations as in
Matlab’s linprog function using the merit scores defined
with Eq. 2. Instead, we argue that our results specify
constraints on the underlying mechanisms that the brain
implements when determining how colors correspond to
objects in color-coding systems.

We also note that there is a conceptual distinction
between color-object associations, such as rating how
strongly white is associated with paper, and color in-
ferences, such as inferring which colored bin is desig-
nated for paper. The color-object associations we
present here are direct correspondences between
colors and objects, given that participants in the pilot
study were asked to rate how much they associated
each color with each object. At the outset of this
study, it was unknown whether participants would ap-
proach the recycling tasks by making inferences based
on these color-object associations or if they would
use some other approach. For example, although
paper is strongly associated with white, that does not
mean that people would infer that white was the cor-
rect bin for discarding paper. Participants could have
associated white with the concept of paper, yet green
with the concept of recycling paper, in which case
they would have inferred the green bin was correct
for discarding paper. Yet, we found that people in-
ferred that white bins were for paper and green bins
were for compost (Fig. 11), supporting the notion
that assignment inference operates on color-object
associations.
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The present study focused on color-coding in recyc-
ling, but the results should generalize to any domain in
which there are systematic associations between con-
cepts and the colors that serve as their referents. The
limitation, therefore, should depend on the degree to
which there are systematic color-concept associations.
Previous work on assigning colors to concepts for use in
data visualization suggested such limitations might arise
for concepts that are not highly “colorable” (e.g. types of
fruit), where “colorabilty” was defined with respect to
how systematically colors co-occurred with concepts in
Google image searches (Lin et al, 2013). Subsequent
work on color-concept assignments focused only on
concepts that were highly colorable, where colorability
was as defined with respect to co-occurrences between
concepts and basic color terms (Berlin & Kay, 1969) in
the Google n-grams corpus (Setlur & Stone, 2016). How-
ever, it is possible that a different method for quantifying
color-concept associations—such as direct human judg-
ments used here, or inferring color-word topics from
human-designed media (Jahanian, Keshvari, Vishwa-
nathan, & Allebach, 2017)—will reveal systematic associ-
ations useful for assigning more abstract concepts to
colors for visual communication.

Conclusion

The results of this study support the notion that people
perform an assignment color inference process when
they interpret color-coding systems. By understanding
how people make such color inferences, it will be easier
to anticipate observers’ expectations and create visual
media that are easier for observers to interpret and
understand.

Endnotes

"By “designer,” we mean anyone who creates a visual
display for communication purposes. This may be a pro-
fessional designer, but it may also be a scientist who cre-
ates figures to communicate research findings, a hospital
staff member who creates a color-coding system for or-
ganizing patient records, or a middle school student
who creates a diagram for a class project. In the present
study, the designers are the experimenters.

’In general, it is possible that two different assign-
ments achieve optimal total merit. For example, if all
edges are assigned identical merit scores then any as-
signment is optimal. There are many efficient algorithms
for solving assignment problems. The oldest and most
famous method is the Kuhn—Munkres algorithm (Kuhn,
1955; Munkres, 1957).

*One additional participant was run using the wrong
(uncalibrated) computer monitor due to experimenter
error, so that participant’s data were not analyzed or re-
ported here.
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*This and all subsequent logistic regressions used gen-
eralized linear model (glmer) with a logit link function
using the lme4 package (version 1.1-12) in R.

®One participant on one trial pressed the enter key in-
stead of the left or right arrow key so we flipped a coin
to code their response on that trial.

®In principle, one could choose any value of T to gen-
erate color sets, and this would control how much
weight we place on maximizing the association between
all paired items vs minimizing the association between
unpaired items. The values T = 0 (no weight on minim-
izing the association between unpaired items) and 1 =1
(equal weight on maximizing the association between all
paired items and on minimizing the association between
unpaired items) are representative choices, but other
choices are possible. Additional file 1: Figure S1 shows
the color sets that arise from all possible choices of .
Additional file 1: Figure S2 shows results from data col-
lected from a different set of participants on an inter-
mediate value of t (t = 0.7). The pattern of the data for
T = 0.7 lies between that of T = 0 and T = 1.

’Originally, each of the three color sets was deter-
mined by solving an encoding assignment problem using
a different merit function for each set (isolated merit
function, balanced merit function, and baseline merit
function). Here, we are trying to predict how partici-
pants solve the decoding assignment problem to recover
the correct mapping between colors and objects. To
generate these predictions, we tried both the isolated
and balanced merit functions and both produced virtu-
ally identical predictions for the isolated color set (r(34)
=0.9991, p < 0.001) and the balanced color set (r(34) =
0.9996, p < 0.001). The predictions shown in Fig. 11a are
for the balanced merit function.

Additional file

Additional file 1: Supplementary methods, analyses, and results. (PDF J
323 kb)
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