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Abstract

problem solving in applied contexts.

It is notoriously difficult for people to adaptively apply formal mathematical strategies learned in school to real-
world contexts, even when they possess the required mathematical skills. The current study explores whether a
problem context’s mechanism can act as an “embodied analogy” onto which abstract mathematical concepts can
be applied, leading to more frequent use of formal mathematical strategies. Participants were asked to program a
robot to navigate a maze and to create a navigation strategy that would work for differently sized robots. We
compared the strategy complexity of participants with high levels of mechanistic knowledge about the robot
against participants with low levels of mechanistic knowledge about the robot. Mechanistic knowledge was
significantly associated with the frequency and complexity of the mathematical strategies used by participants,
suggesting that learning to recognize a problem context’s mechanism may promote independent mathematical
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Significance

People typically have a variety of problem-solving
strategies available to them for any given mathematics
problem. The difficulty lies in selecting the appropriate
problem-solving strategy that one learns in classrooms
to later, real-world experiences. This is an especially
prevalent problem for situations that are not overtly
mathematical but would benefit from the use of formal
mathematics strategies, as people often default to sim-
pler, more intuitive strategies such as guess-and-check,
even when a more formal strategy would be more effect-
ive. The current study explores whether an individual’s
mechanistic knowledge about a problem situation can
influence the strategies that they use to solve the prob-
lem. Our findings show that higher levels of mechanistic
knowledge are associated with more frequent and
complex mathematical strategy use, suggesting that
mechanistic knowledge may be one pathway through
which adaptive mathematical strategy use can be
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improved. Encouraging students to break down problem
situations into their constituent, mechanistic parts and
to think deeply about the mechanistic relationships
within a problem could lead to more frequently use of
formal mathematical strategies in applied problem
contexts.

Background

Students learn multiple strategies for problem solving
during schooling. The challenge is whether they will be
able to apply the most appropriate strategy outside of
the classroom in real-world contexts, where they are
unlikely to receive guidance about how best to approach
a problem. This may be particularly difficult when a
problem involves mathematics, given the wide range of
strategies that are often applicable to a single situation.
For example, an algebra problem can be solved using in-
tuitive strategies such as guess-and-check (i.e., inputting
and testing unsystematic values in place of the algebraic
unknown), which are simple and easy to apply, but can
be ineffective in terms of accuracy and time. In contrast,
the problem can also be solved using more complex
strategies such as rearranging the problem to solve for
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the algebraic unknown, which, while more complex to
apply, are likely faster and more accurate with the
requisite mathematical knowledge.

There is evidence that both younger children (e.g.,
Siegler, Adolph, & Lemaire, 1996) and adults (e.g.,
LeFevre, Sadesky, & Bisanz, 1996; Lemaire & Reder,
1999) can access and flexibly switch between strategies
during math problem solving. However, people also tend
to default to simpler mathematical strategies regardless
of the problem situation and their pre-existing math
knowledge. For example, Nathan and Koedinger (2000)
investigated the problem-solving strategies for word
problems of high school students who had taken, or were
currently, taking Algebra I. Despite having extensive prac-
tice with algebra, the majority utilized guess-and-check or
work-backwards methods (i.e., reversing the mathematical
steps given in a problem to determine the algebraic un-
known). While such strategies were somewhat successful
(approximately 70% correct) and can provide a prelimin-
ary representation of a problem before more abstract con-
cepts are applied, in a number of contexts they can also
take more time and be overall less accurate than formal
strategies. They are also limited to answers that can be
guessed or problems that provide numbers from which
students can work backwards (Tabachneck, Koedinger, &
Nathan, 1995). The students in Nathan and Koedinger’s
(2000) study had the requisite knowledge to access math-
ematical strategies and were in an overtly mathematical
context, but still opted for limited strategies; it is likely
that limited strategies are even more common in contexts
that do not explicitly call for math but would still benefit
from mathematical methods. Given that people already
utilize more intuitive strategies, the question is how to sup-
port people in recognizing when more complex and formal
strategies would be more effective in a problem situation.

Mechanistic knowledge influencing math use through
embodied analogies

Physical manipulatives may be one tool that can encour-
age the selection of appropriate math strategies for a prob-
lem. Most prior studies on physical manipulatives have
focused on its effects on mathematical learning rather
than strategy use, finding that physical manipulatives can
positively influence the learning of mathematics. For
example, a meta-analysis of 55 studies by Carbonneau,
Marley, and Selig (2013) found that concrete materials
were generally better for mathematics learning than ab-
stract mathematics instruction. Physical manipulatives are
thought to provide several unique affordances, the most
obvious being the opportunity to physically engage with a
learning task. Embodied cognition theories suggest that
action and perception support higher level cognitive pro-
cesses (Barsalou, 2008), and perceptual interactions can
improve memory and learning (e.g., Glenberg, Gutierrez,
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& Levin, 2004; Klatzky & Lederman, 2002; Kontra, Lyons,
Fischer, & Beilock, 2015). However, given the abstract na-
ture of mathematical concepts (especially at higher levels), it
is difficult to directly connect mathematical concepts to
physical actions, so physicality per se may not be broadly
valuable for problem solving with mathematics. Instead,
other affordances may play a stronger role. Furthermore,
other studies have found that emphasizing the phys-
ical aspects of a manipulative can make students
focus too strongly on the manipulative itself, distract-
ing students from learning the abstract concept it is
meant to represent (see Uttal, O’'Doherty, Newland,
Hand, & DeLoache, 2009).

We propose that focusing on the physical object can
actually be helpful for learning math strategies, so long
as the physical manipulative can be used as an “em-
bodied analogy.” The individual parts of the manipula-
tive become places where number values can be applied,
and the physical relationships between those parts can
support discoveries about how those numerical values
interact, providing a concrete visualization of mathemat-
ical principles. Consider, for example, the use of a toy
car to practice proportional reasoning. While focusing
on the toy car may be distracting if students think of it
as play rather than mathematics, students may also be
able to discover the regular mechanistic relationship be-
tween wheel rotations and distance traveled by interact-
ing with the toy car. Having recognized that these parts
are related in this way, students can then apply quantita-
tive values to each part, see how these numbers affect
one another, and see a concrete example of proportional
reasoning at work. It is when these mechanistic relation-
ships are irregular, too abstract, or lost because of extrane-
ous physical details that the usefulness of a manipulative
as an embodied analogy would be diminished. For ex-
ample, a manipulative such as an abacus would be more
difficult to use as an embodied analogy, as the mechanistic
relationships between the parts (i.e., the abacus beads
representing different place values) are more abstract and
harder to determine without explicit instruction. Thus,
students would be less likely to discover such relationships
on their own and be able to apply quantitative values to it
(though, with instruction about what each part represents
and how they relate, then it is expected to be equally ef-
fective). It is possible that routine use of embodied analogy
manipulatives could train students to break down problem
contexts into their constituent parts and recognize
whether regular relationships exist between them, thus
allowing them to see whether formal mathematics can be
used in that problem. The use of manipulatives that would
be found in real-world contexts can further prepare stu-
dents to apply math principles in less math-overt situa-
tions, potentially fostering the use of formal math
strategies in later applied contexts.
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In order to use a physical manipulative as an
embodied analogy that supports mathematical use, a stu-
dent would need to understand both the mechanistically
relevant parts of the manipulative (on which numerical
values can be meaningfully applied; e.g., the toy car’s
wheels), as well as how those different parts relate (to
understand the relationships between the numerical
values; e.g., the relationship between the toy car’s wheel
rotations and distance traveled). This is supported by re-
search that has distinguished two types of visuospatial
representations that appear to affect mathematical prob-
lem solving: pictorial representations, which describe the
specific people, places, or objects in a problem, and
schematic representations, which depict the spatial
relations involved in a problem. The use of schematic
representations positively correlates with mathematical
problem-solving success, while the use of pictorial repre-
sentations negatively correlates with mathematical
problem-solving success (Hegarty & Kozhevnikov, 1999;
van Garderen & Montague, 2003). As a more extreme
performance contrast, students with learning disabilities
use more pictorial representations than gifted students
(van Garderen & Montague, 2003). This suggests that
people must have knowledge of both the parts of a
problem context and their relations for mathematical
problem solving to be improved.

There is also evidence that thinking about a manipula-
tive’s parts and relations while learning can influence
later mathematics performance. Silk (2011) taught pro-
portional reasoning concepts to middle-school students
using a “robot dancing” exercise. Student groups were
asked to synchronize the movements of differently sized
robots into a choreographed dance. Half of the student
groups were encouraged to use mathematics to model
their intuitions about how the robot worked (i.e., to
think mechanistically about mathematics and the robot’s
parts), while other groups were encouraged to use
mathematics to calculate the input values needed to get
desired output values for the dancing task (i.e., to think
calculationally about mathematics and the robot). The
mechanistic student groups significantly improved on a
proportional reasoning test compared to the calcula-
tional student groups. Furthermore, interviews showed
that all four of the mechanistic groups transferred their
strategies from one robotics task to another robotics
task, compared to only one of the four calculational
groups, suggesting that thinking mechanistically during
learning can positively affect mathematical problem solv-
ing and close transfer.

Still, little work has investigated how mechanistic
knowledge can influence the likelihood of using formal
mathematical strategies in more complex problems that
are not clearly mathematical in nature, or when a person
already has the necessary mathematical knowledge to
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solve the problem. Having high mechanistic knowledge
of a problem may make the structural components of a
problem and their connections clearer, which may make
it easier to use it as an embodied analogy and to apply
formal mathematics to the problem when appropriate.
Alternatively, high mechanistic knowledge may instead
overemphasize extraneous details that distract from the
relevant mechanistic parts that can be used for an em-
bodied analogy (Belenky & Schalk, 2014; Harp & Mayer,
1998; Kaminski, Sloutsky, & Heckler, 2009) or inhibit
transfer to novel situations (e.g., Sloutsky, Kaminski, &
Heckler, 2005; Son & Goldstone, 2009).

The current study

In the current study, we begin exploring embodied
analogies by investigating whether mechanistic know-
ledge influences the frequency or generalizability of
mathematical strategies during an applied problem-
solving task. Notably, we test participants who have
the required knowledge to solve the task through for-
mal mathematics; the question is whether they will
do so when the task does not explicitly call for math.
Thus, our participants are students from a fairly se-
lective college that requires above average quantitative
Scholastic Assessment Test (SAT) scores for admission.

We chose a task that could be solved with relatively
basic mathematics for college students. In particular, the
task involves determining the scalar or ratio relationship
between two quantities. Since the quantitative SAT con-
tains many questions about proportional and algebraic
reasoning, the participants, who all did relatively well on
this test, possessed sufficient mathematical ability to
complete the given task.

In the task, we ask participants to program a LEGO
NXT robot to navigate through a maze. The robot’s
mechanism involves three parts: the robot’s program,
motors, and wheels. The program (which used a C-
based language called ROBOTC; www.robotc.net) con-
sists of commands that tell the robot which direction to
move and the number of times to rotate its motors
(through commands in the form of “direction (number of
motor rotations)”). When the program is run through
the robot’s interface, the robot’s motors rotate the num-
ber of times designated in the commands, causing the
robot’s wheels to rotate, which causes the robot to move.
The number of motor rotations, the number of wheel
rotations, and the distance that the robot travels are
proportionally related: one motor rotation will always
lead to the same number of wheel rotations, which will
always lead to the same distance traveled by the robot.
This insight is a relatively straightforward discovery from
numbers produced through experimentation, and
middle-school-aged children regularly made this discov-
ery in earlier work with this task (Silk, 2011).
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In addition to navigating the robot through the maze,
participants are also asked to create a generalizable strat-
egy that could navigate differently sized robots through
the same maze. Although nonmathematical strategies
(i.e, guessing and checking) could be used to navigate
the provided robot through the maze, formal mathemat-
ics (i.e., proportional reasoning) are a necessary compo-
nent of strategies that would generalize across differently
sized robots. We investigate the role of mechanistic
knowledge by comparing the strategies of participants
who completed a short task emphasizing the robot’s
motor-wheel relationship (High-Mechanistic condition)
against the strategies of participants who were not given
this task (Low-Mechanistic condition).

However, we observe considerable migration across
conditions: while most participants in the original High-
Mechanistic condition are able to accurately describe the
robot’s mechanism (71%), many participants from the ori-
ginal Low-Mechanistic condition are also able to do so
(54%). Thus, we recategorize our High-Mechanistic and
Low-Mechanistic groups based on participants’ Original
Condition and their performance on a mechanistic know-
ledge assessment at the end of the study (the Mechanistic
Assessment) to take both the task emphasizing motor-
wheel relations and any mechanistic knowledge discov-
ered individually into account. These analyses are reported
in the “Results” section. In addition, we provide results
using the Original Condition assignment, as well as group
assignment based only on the Mechanistic Assessment
(ignoring Original Condition), for comparison in Table 1,
noting that results for all three assignment methods trend
in the same direction.

Using the recategorized groups, we hypothesize that
the High-Mechanistic group will use more complex and
accurate mathematical strategies than the Low-
Mechanistic group, because they are more likely to con-
sider the mechanistic relationship between the robot’s
motors and wheels and, therefore, discover the propor-
tional relationships between motor rotations, wheel rota-
tions, and distance traveled.
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Method

Participants

Participants consisted of 50 undergraduate students re-
cruited through the psychology department’s subject
pool. To avoid ceiling effects, students majoring in
robotics-related or math-heavy majors were not eligible
to participate in the study because they (unlike much of
the general population) must reason mathematically
about many situations on a regular basis. Originally, 24
participants were randomly assigned to the High-
Mechanistic condition and 26 participants were randomly
assigned to the Low-Mechanistic condition. However, par-
ticipants were recategorized into a High-Mechanistic (n =
17) group and a Low-Mechanistic groups (n =12) using
criteria described in the Mechanistic Assessment section
below, while 21 participants were excluded from analyses
(though analyses on the full sample based on Original
Condition or Mechanistic Assessment are shown in
Table 1). For participants who reported their quantitative
SAT scores, scores did not significantly differ between the
High-Mechanistic (M =647 = 85th percentile, SD =79)
group, the Low-Mechanistic (M =639 =83rd percentile,
SD = 86) group, and the excluded participants (M =618 =
79th percentile, SD = 101), though five High-Mechanistic
group, five Low-Mechanistic group, and six excluded par-
ticipants did not report their SAT scores. Average reported
SAT scores were high enough to suggest that participants
likely had the proportional reasoning knowledge to
complete the task, even though their majors did not re-
quire frequent use of mathematics.

Materials

Mechanistic Manipulation

Participants in the original High-Mechanistic condition
were shown (but did not physically interact with) two
defective physical LEGO NXT robots and asked to pre-
dict whether the robot would be able to move forward
in a straight line. On the first robot (Fig. 1, left), the cord
attaching the robot’s brick (where the robot’s programs
and commands are stored) to the robot’s motors was

Table 1 Summary of results comparing High-Mechanistic and Low-Mechanistic participants defined by Original Condition, Mechanistic
Assessment, and Matched Original Condition and Mechanistic Assessment

Mechanistic Assessment (N = 50) Matched (N = 29)

Task Original Condition (N = 50)
Navigation strategy High = Low
MRMQ High = Low

Memory drawings

Wheels: High = Low
Motors: High > Low
Screens: High = Low

High > Low
High > Low

Wheels: High = Low
Motors: High = Low
Screens: High = Low

High > Low
High > Low

Wheels: High = Low
Motors: High > Low
Screens: High = Low

Significant predictors of strategy MRMQ: =037

Mastery goals: B =-045

Group: B=0.35 (Forward) Group: =061
(Backward) Group: 8=0.69
Mastery goals: B=-042

Performance goals: =048

MRMQ Math in Robot Motion Questionnaire
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disconnected. Right, the robot's two wheels were mismatched in size

Fig. 1 The two robots used in the Mechanistic Manipulation. Left, the USB cord connecting the robot’s right motor to the robot's brick was

disconnected to emphasize the relationship between the
robot’s commands and wheel movements via motor
rotations. The second robot (Fig. 1, right) had two mis-
matched wheels (one large wheel and one small wheel)
to emphasize the relationship between the robot’s wheel
size and movement distance. An experimenter ran each
robot to test participants’ predictions and show that the
robots would not run properly. The experimenter also
explained the cause of the robots’ errors (specifically that
the brick was disconnected from the motors, and that
the wheels were different sizes). After seeing both ro-
bots, participants were asked to describe the process
through which the robot goes to move forward, starting
from the moment a program is downloaded into the
robot; if participants’ responses contained errors, the ex-
perimenter corrected them before moving on to the next
task. These explanations did not provide explicit infor-
mation about the mathematical relationships between
the parts of the robot. The manipulation took approxi-
mately 5 min to complete. Because of the manipulation’s
short duration, the original Low-Mechanistic condition
did not experience a parallel manipulation to avoid
introducing potential confounds with a control task.

Mechanistic Assessment

At the end of the experiment, participants were asked
two open-ended questions about how the robot func-
tioned to assess their mechanistic knowledge of the
robot: “Please explain the process that the robot goes
through to move, starting from its motor rotating” and
“Please draw a diagram of the process.” Participants were
categorized into the High-Mechanistic group if they had
received the Mechanistic Manipulation and indicated in
at least one of the two questions that the robot’s mech-
anism included both motors and wheels, and that the
motor rotations caused the robot’s wheels to rotate (i.e.,
they recognized the fundamental mechanism that con-
nects the parts of the robot). Participants were catego-
rized into the Low-Mechanistic group if they had not
received the Mechanistic Manipulation and had not ac-
curately answered either of the Mechanistic Assessment

questions. Participants who either received the Mechan-
istic Manipulation but did not accurately answer either
of the Mechanistic Assessment questions or did not re-
ceive the Mechanistic Manipulation but accurately an-
swered one of the two Mechanistic Assessment questions
(i.e., participants who migrated out of condition) were ex-
cluded from analyses. We chose these criteria to define
our groups for analysis because participants who received
the Mechanistic Manipulation and were able to correctly
answer one of the Mechanistic Assessment questions
likely had more robust mechanistic knowledge of the
robot compared to participants who did not receive or
discover any information about the mechanism. It is also
doubtful that participants’ responses to the Mechanistic
Assessment reflect prior mechanistic knowledge and in-
stead represent mechanistic knowledge that was learned
from the Mechanistic Manipulation or developed during
the experiment’s duration because no participants re-
ported post-childhood experience with nonrobotic LEGO
and only two participants in the excluded group reported
high-school experiences with robotics. Thus, while we ex-
pect the Mechanistic Manipulation to be the primary
method increasing mechanistic understanding, we are able
to account for participants who migrated across condi-
tions (7 originally in the High-Mechanistic condition, 14
originally in the Low-Mechanistic condition) by including
the Mechanistic Assessment responses in group assign-
ment. Two independent coders rated responses to the as-
sessment (Kappa=1.0). Examples of typical High-
Mechanistic and Low-Mechanistic responses are shown in
Table 2.

Maze Navigation Task

Participants learned to program a physical LEGO NXT
robot (see Fig. 2, left) using ROBOTC, a C-based lan-
guage that was designed to simplify robot movement
programming. Four commands given to participants that
were critical for this task told the robot which direction
to move and the number of times to rotate its motor
during each movement (e.g., forward (100), backward
(150), turnRight (50), turnLeft (30)).
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Table 2 Examples of High-Mechanistic and Low-Mechanistic answers on the Mechanistic Assessment

Example 1

Example 2

High-Mechanistic  “First, you create the path on the computer that the robot will go,
then, plugging in the USB, | downloaded the software to the box on

the robot.

“Instructions given from the computer travel to the body
which sends them to the motor.
The motor turns which then turns the wheels.”

From there, once | press run, the wires connected to the box take
that info from the box to the motor of the robot, which then moves

the wheels.”

Low-Mechanistic

“When going forward and backward, the robot doesn’t move straight.
When going left and right, it spins in the desired direction.”

“The motor gets its instructors from the computer which
tells what direction to go and for how long to go in that
direction.”

Participants were given 30 min to navigate their robot
through a physical maze on a 134-cm x 148-cm white-
board placed on the ground (see Fig. 2, right). Partici-
pants were provided with a tape measure to measure the
robot or maze, though there was no requirement to use
the tool. Participants were also asked to create a naviga-
tional strategy that subsequent participants could use to
complete the same task (though possibly with differently
sized robots) and were told that guess-and-check strat-
egies were generally inefficient for this purpose. After
creating their initial strategy, participants were granted
an additional 30 min to revise their strategy, with a re-
minder that their strategy should generalize to robots
with differently sized wheels, and they were given access
to a set of smaller robot wheels for testing purposes.
Two independent raters coded participants’ final strat-
egies into one of four types based on the type of strategy
used: Guessing, Plausible Guesstimation, Specific Pro-
portional, and General Proportional (definitions and ex-
amples shown in Table 3), with Kappa=1.0. The first
two strategy types do not explicitly use mathematics,
though prior research suggests that the Plausible Gues-
stimation strategy is a foundation upon which more so-
phisticated mathematical strategies can be built
(Nhouyvanisvong, 1999). The latter two mathematical
strategy types are both relevant to the task, but only a
General Proportional strategy can fully solve the task

given to the participants. Note that the width of the
maze corridors is significantly larger than the width of
the robot, so more than one solution at the minor detail
level is possible for the base path through the maze.

We purposefully designed the navigation portion of
the task to be fairly easy because we wanted all partici-
pants to progress far enough to be able to have time to
focus on the creation of their strategies. Furthermore,
the outcome variable of interest was not whether partici-
pants could successfully navigate through the maze, but
whether their solution strategy could be generalized. To
create a generalizable strategy, participants must have
uncovered the simple proportional relationship between
wheel size and distance per motor rotation, and between
wheel size and angle turned per motor rotation. Partici-
pants could conceptualize these relationships in abso-
lute/functional terms (by reasoning about the multipliers
between wheel diameter and centimeters per motor ro-
tation or angle per motor rotation) or in relative/scaling
terms (by reasoning about the scaling constants between
the tested robots and other robots).

It is important to note that while the parts of the
robot’s mechanism (i.e., the wheels and motors) are also
the parts of the robot that can be quantified in a formal
mathematical strategy, high mechanistic knowledge of
the robot’s details is not logically necessary for the
creation of a mathematical formula. For example,

indicates the ending position where the robot should be navigated

Fig. 2 The robot (left) and a top-down picture of the maze used in the Maze Navigation Task. Thick black lines represent barriers that should not
be crossed. The thick red line in the green start oval indicates the starting position, behind which the robot must be placed. The blue finish oval
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Table 3 Codes used for the Maze Navigation Task
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Code Description

Example

Non-math: Guessing
no clear basis for guessed numbers

Non-math: Plausible Guesstimation

situational basis

Math: Specific Proportional

Math: General Proportional

Participant created a guess-and-check strategy with

Participant created a guess-and-check strategy;
guessed numbers were estimated using some

Participant created a strategy utilizing proportional
reasoning; values were specific to their robot

Participant created a strategy utilizing proportional
reasoning that could be generalized to other robots

“Go straight direction, forward (100). turnLeft (28), 28 is still
too large to turn, 100 is too long.

Go straight like first step, but the length is a little shorter,
forward (100)."

“Guess + test was my main strategy. After | learned that it
took the robot 150 (approx.) motor rotations to go one
straight stretch of the maze + 30 (approx.) motor rotations
to make a turn in the maze, | just entered in the numbers
until finally the robot got through the maze.”

“It is 0.1 in. per motor-rotation. [...] Measure the distance
for each straight trait which is divided by 0.1 to get the
number of motor-rotations for each straight trait.”

“Start off with a given value for motor rotations (R1) and
measure the distance the robot travelled for that number
of rotations (D1). Measure the distance you would like the
robot to travel to reach its intended destination (D2).
Calculate the number of rotations it will take the robot to
travel this distance using the formula R1/R2 = D1/D2."

participants could figure out a pattern between the num-
bers inputted into the program and the distance traveled
by the robot and derive a formula from that pattern,
without ever determining the relation between the
motor and the wheels of the robot.

Math in Robot Motion Questionnaire (MRMQ)

To more directly test knowledge about the mathematical
relationships involved in solving robot motion problems,
this questionnaire consisted of eight open-ended ques-
tions about the quantitative relationships between the
robot’s motor rotations, wheel rotations, and distances
(e.g., “Are the number of wheel rotations related to the
distance that the robot moves forward?”). Each response
was scored for the number of accurate mathematical re-
lationships included in the answer, such that a higher
score signified greater quantitative understanding (with
a maximum score of 16 points). Cronbach’s alpha (a) for
this questionnaire was only 0.64, suggesting that an un-
derstanding of each mathematical relationship was not
strongly dependent on one another (i.e., there were sep-
arate insights rather than just one overall insight). The
overall alpha is still sufficiently high to justify analysis as
one overall construct.

Robot-drawing Tasks

Participants were asked to draw the robot that they had
programmed from memory. These drawings from mem-
ory provided a measure of detail in participants’ repre-
sentations of the robot. For the memory drawing, the
robot was taken away, and participants drew on a blank
sheet of 8.5-in. x 11-in. paper. They were specifically
told to include the most important parts of the robot in
their drawing. A second drawing task, designed to con-
trol for drawing ability across participants, was given

with the same instructions, except participants could
look at and manipulate the robot as a reference while
they drew. To distinguish between proportionally relevant
and proportionally irrelevant parts of the robot’s mechan-
ism, two raters coded for the number of accurately drawn
wheels and the number of motors included in the draw-
ings (mechanistically and proportionally relevant features),
and whether the drawing included a detailed depiction of
the robot’s screen (a mechanistically relevant but propor-
tionally irrelevant feature) (Kappa = 1.0).

Paper Folding Test

This test is associated with the ability to perform dy-
namic intrinsic spatial transformations (Ekstrom, French,
Harman, & Dermen, 1976; Shepard & Feng, 1972). It is
correlated with the ability to perform complex animation
tasks (Hegarty, Kozhevnikov, Gero, & Tversky, 1999),
which may be a critical factor in turning mechanistic
understanding of robot movements into mathematical
patterns. This measure is also useful in ruling out a
confound of spatial ability as the underlying variable be-
tween mechanism understanding and mathematical
strategy use. A series of pictures depicts one to three
folds made in a piece of paper, and the final picture
shows a hole punched into the paper. Participants
selected which of five options illustrated the reopened
piece of paper. The test consisted of two parts with 10
questions each (a = 0.84).

Motivation questionnaire

As a control variable, participants answered nine ques-
tions about their level of motivation during the Maze
Navigation Task, building upon theories and measures
of engagement (the Intrinsic Motivation Inventory, e.g.,
Ryan, 1982) and achievement goals (Elliot & Church,
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1997). Three questions asked about the participants’ level
of engagement (« = 0.91), three questions asked about the
participants’ level of performance-approach goals (a =
0.86), and three questions asked about participants’ level
of mastery-approach goals (a=0.80). Participants were
asked to rate their agreement with each statement on a
scale of 1 (Strongly disagree) to 7 (Strongly agree).

Procedure

Participants gave informed consent before starting the
experiment. Participants first completed the Paper
Folding Test. Next, an experimenter gave a brief, verbal
introduction to the LEGO NXT robot. The introduction
informed participants that they would be typing com-
mands into the robot’s program that would tell the robot
which direction to move and how many times to turn its
motor, which would cause the robot to move. While the
introduction did not explain the robot’s full mechanism
(i.e., that the motors rotate, causing the wheels to rotate,
causing the robot to move), it implied that the robot’s
motors were connected to the robot’s wheels (as the
wheels are the only mechanism through which the robot
can move). Thus, differences between participants could
not be fundamental misunderstandings about the source
of movement, and instead were expected to be at the level
of understanding the motor-to-movement relationship.
Participants in the original High-Mechanistic condition
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completed the additional Mechanistic Manipulation, while
participants in the original Low-Mechanistic condition
moved on immediately to the next task.

All participants then began the Maze Navigation Task,
which was introduced as a programming task and in-
cluded basic programming instructions. After 30 min,
participants were given an additional 30 min to revise
their initial strategy while working with a robot with
smaller-sized wheels. At the end, participants were given
the Robot-drawing and Control-drawing Tasks, as well
as the Motivation, Mechanistic Assessment, and Math in
Robot Motion Questionnaires.

Results

Maze strategies

Figure 3 shows the proportion of participants who created
each type of final strategy based on their (1) Original Con-
dition, (2) their Mechanistic Assessment performance,
and (3) their recategorized Mechanistic group (based on
matching their Original Condition with their Mechanistic
Assessment performance). We examined strategy
complexity between the High-Mechanistic and Low-
Mechanistic groups, with Guessing being the least com-
plex strategy possible, and General Proportional being the
most complex strategy possible. As hypothesized, the
High-Mechanistic group (mean rank =19.0) was signifi-
cantly more likely to create complex strategies than the
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Low-Mechanistic group (mean rank = 9.33), U =34.0, p =
0.002, r = -0.59. In general, participants with higher mech-
anistic knowledge created proportional strategies that
were more mathematically complex (and consequently
more accurate), while participants with lower mechanistic
knowledge relied primarily on estimation or limited pro-
portional strategies. In general, participants with higher
mechanistic knowledge created proportional strategies
that were more mathematically complex (and conse-
quently more accurate), while participants with lower
mechanistic knowledge relied primarily on estimation or
limited proportional strategies.

Math in Robot Motion Questionnaire

The High-Mechanistic group (M =6.12, SD=2.67)
had significantly higher scores on the MRMQ than
the Low-Mechanistic group (M =3.75, SD=245),
1(27) =-2.43, p=0.02, d=0.92, showing a greater un-
derstanding of the quantitative relationships that exist
within the robot. Participants’ scores on the question-
naire also positively correlated with the complexity of
their final maze strategy, r(29) =0.61, p <0.001, indi-
cating that participants who created more mathemat-
ically complex strategies in the Maze Navigation Task
were those who possessed greater understanding of
the quantitative relationships within the robot, not
simply participants who chose to use this understand-
ing in their solutions.

Robot-drawing Tasks

As expected, there were no differences between the
number of accurately drawn wheels or motors in the
control drawings (when participants were able to use the
robot as a reference while they drew), showing that there
were no differences in drawing ability between the High-
Mechanistic and Low-Mechanistic groups. For the mem-
ory drawings, both groups tended to draw all three
wheels (High-Mechanistic mean rank =15.09; Low-
Mechanistic mean rank = 14.88), U = 100.5, p =0.95, r =
-0.02, and to include the key screen details in their
drawings (High-Mechanistic: 83% inclusion; Low-
Mechanistic: 88% inclusion), X*(1, N=29)=0.14, p=
0.56. However, the groups significantly differed in the
number of motors included in their memory drawings,
U=32.0, p=0.001, r=-0.62. The High-Mechanistic
group (mean rank =19.1) included significantly more
motors in their drawings than the Low-Mechanistic
group (mean rank=9.17). Thus, while the groups
showed equivalent encoding for the more visually salient
parts of the robot (ie., the screen and wheels), there
were differences for the less visually salient, but still
mechanistically relevant, motors, corroborating our as-
sumption that the High-Mechanistic group possessed
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more mechanistic knowledge about the robot than the
Low-Mechanistic group.

Table 1 shows that there were no significant differences
between the number of accurate motors for the High- and
Low-Mechanistic groups based on Mechanistic Assess-
ment only. In this case, the average for both groups show
that both groups generally included at least one motor in
their drawing, suggesting that they had the sufficient
mechanistic knowledge about the robot’s wheels and mo-
tors that would be needed for the robot to be used as an
embodied analogy. Thus, the lack of difference between
the High- and Low-Mechanistic groups based on Mech-
anistic Assignment does not weaken the findings relating
mechanistic knowledge and strategy use.

Controlling for individual differences
To determine whether the relationship between Mechanistic
group and Maze Navigation Task strategies was explained
by individual differences in spatial ability, motivation, robot
math understanding, or encoded perceptual details, multiple
linear regression was used to develop a model predicting
participants’ used math strategy from their group, Paper
Folding Test score, average performance goal rating, average
mastery goal rating, average interest rating, MRMQ score,
and number of motors included in their memory drawings.
Because our reduced sample (N =29) would likely pro-
duce an unstable model if fully saturated, we instead
conducted two regressions using forward selection and
backward elimination with an entry threshold of p = 0.05
and a removal threshold of p=0.1. Forward selection
settled on a model in which Mechanistic group was
the only significant predictor of maze strategy com-
plexity (8=0.61, p<0.001). Backward elimination set-
tled on a model in which Mechanistic group (f5=
0.69, p<0.001), mastery goal rating (f=-042, p=
0.03), and performance goal rating (8=0.48, p =0.01)
were significant predictors. The forward and backward
predictor models were able to account for 37% (F(1,
27)=15.9, p<0.001, R*=0.37) and 52% (F(3, 25)=
9.07, p<0.001, R*=0.52) of the variance in Maze
Navigation Task strategy complexity, respectively.
Table 4 shows the zero-order and partial correlations
for the reduced participant sample described above
(N=29), as well as the fully saturated but poorly fit-
ted model using the original participant sample (N =
50), and Table 1 summarizes the significant predictors
found with each assignment type (Original Condition,
Mechanistic Assessment, and Matched Original Con-
dition and Mechanistic Assessment). Note that the
Paper Folding Test, which typically correlates with
tests of general intelligence, (e.g., Visser, Ashton, &
Vernon, 2006), did not significantly predict strategy
choice in any of our models, suggesting that pre-
existing individual differences in intelligence are not
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Table 4 Maze Navigation Task strategies related to individual
difference measures for the reduced (N =29) and full (N =150)
participant sample

Variable Reduced sample Full sample

r Partial r r Partial r
Original Condition - - 0.16 0.13
Mechanistic group 061* 0.52* 0.51% 0.29%
Paper Folding Test 0.10 003 0.23** 0.13
Interest 0.32* 0.05 0.26* 0m
Mastery 0.12 —040%* 0.09 -0.20
Performance 0.32* 048* 0.16 0.20
MRMQ 041* 0.25 0.38* -007
Drawing (motors) 0.49* 0.02 0.14 0.20

*p < 0.05, **p < 0.07. MRMQ Math in Robot Motion Questionnaire

driving the relationship seen between mechanistic
knowledge and strategy choice. Instead, mechanistic
knowledge acts as a unique and consistent predictor
of strategy.

Discussion

Students are taught a variety of mathematical strategies
during schooling that they must learn to appropriately
apply to real-world contexts. However, limited intuitive
strategies are often used in contexts that are overtly
mathematical and even more so in contexts that are not,
even when more formal strategies would be more effect-
ive and one has the requisite knowledge to apply the
said strategies. The current study investigated whether
physical manipulatives can potentially improve students’
strategy selection through embodied analogies; focusing
participants’ attention on the mechanistic parts and
relationships that exist within a manipulative may allow
participants to see that numeric values can be applied to
these mechanistic parts, thus supporting the creation of
formal mathematical strategies (in this case, a formal
math formula representing the proportional relationship
between the robot’s motor rotations, wheel rotations,
and distance traveled). High-Mechanistic participants
were significantly more likely to use complex mathemat-
ical strategies to solve the Maze Navigation Task than
Low-Mechanistic participants. In addition, the MRMQ
results showed that High-Mechanistic participants had a
greater understanding of the mathematical relationships
within the robot, suggesting that mechanistic knowledge
may help drive the use of mathematics in an applied
context.

Our results support previous findings that mechanistic
knowledge can be useful in scaffolding people toward
mathematical strategies. Bechtel and Abrahamsen (2005)
note that there are two primary ways in which people
decompose mechanisms: structurally, with the focus on
component parts, or functionally, with the focus on
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component operations. Thinking in terms of causal pro-
cesses, as is done when breaking down mechanisms
functionally, has been argued to be more beneficial for
mathematical thinking (Schwank, 1999). In the current
study, the High-Mechanistic participants had sufficient
information about both the component parts of the ro-
bot’s mechanism (as High-Mechanistic participants, on
average, included a large number of wheels and motors
in their drawings), as well as the component operations
between the robot’s motors and wheels (as shown by
their responses on the Mechanistic Assessment), which
would lead to better strategies based on this structural/
functional divide.

Mechanistic knowledge may also foster mathematical
strategies by pushing learners to think about problems
at a less superficial level. For example, Russ, Coffey,
Hammer, and Hutchison (2009) described a case study
in which a second-grade student began building her
knowledge of a science problem by exploring naive
mechanistic explanations. When the student’s teacher
pushed for a correct answer instead of pursuing the
student’s attempts at understanding the mechanism, the
student resorted to using textbook terms that she did
not fully understand. Consequently, Russ recommended
that mechanisms be considered when assessing students’
scientific understanding. Indeed, in many natural
sciences, explanations must include an explanation of
mechanisms to be satisfactory (Machamer, Darden, &
Craver, 2000), and others have advocated for mechanistic
understanding within the social sciences as well (see
Hedstrom & Ylikoski, 2010 for a review). Our findings
suggest that mechanistic knowledge may be equally use-
ful in mathematics. Providing people with information
on the context’s mechanisms may push them toward
mathematical problem-solving strategies.

Limitations

The largest limitation of the current study was that a
substantial number of participants migrated out of their
Original Condition (i.e., those who were originally in the
High-Mechanistic condition were unable to accurately
answer the Mechanistic Assessment, and vice versa). It
is possible that different recategorization criteria for the
“High-Mechanistic” and “Low-Mechanistic” groups
could impact the results found. In the current study’s
analyses, we used relatively conservative criteria based
on participants’ originally assigned condition and their
performance on the Mechanistic Assessment, but we also
found similar results using different sets of criteria. For ex-
ample, High-Mechanistic participants still created signifi-
cantly more complex strategies than Low-Mechanistic
participants when: the High-Mechanistic group included
participants who were in the original High-Mechanistic
condition and answered both Mechanistic Assessment
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questions correctly, while the Low-Mechanistic group
included participants who were in the original Low-
Mechanistic condition and answered 0—1 of the Mechan-
istic Assessment questions correctly; when the High-
Mechanistic group included participants who were in the
original High-Mechanistic condition and answered both
Mechanistic Assessment questions correctly, while the
Low-Mechanistic group included all other participants;
and (marginally significant) when the High-Mechanistic
group included participants who were in the original
High-Mechanistic condition and answered at least one
Mechanistic Assessment question correctly, while the
Low-Mechanistic group included all participants originally
in the Low-Mechanistic condition. Thus, mechanistic
knowledge appears to have a consistent effect on the use
of mathematical strategies, regardless of the way that the
sample is split, meaning that embodied analogies may be a
plausible intervention for improving the quantity and
quality of people’s mathematical strategy use. A separate
question is how robust these findings are. As seen in
Table 1, results varied slightly depending on the
assignment type used (i.e., Original Condition, Mechanis-
tic Assessment, Matched). This suggests that the strength
of this intervention likely depends on the situation, and
future studies should investigate how robust the associ-
ation between mechanistic understanding and math strat-
egy use is under different circumstances, and what can be
done to strengthen it.

The recategorization criteria used in the current study
also excluded a relatively large number of participants
from analyses, which may have biased results if these
participants were meaningfully different from partici-
pants in the High-Mechanistic and/or Low-Mechanistic
groups. Participants’ SAT scores suggest that there were
no significant differences between the groups’ baseline
math abilities (though some participants did not report
their scores). Furthermore, when these excluded partici-
pants were included in analyses as a third unitary group
or as two separate groups, their average scores consist-
ently sat between the High-Mechanistic and Low-
Mechanistic groups’ scores for all outcome measures
(except for the number of wheels included in memory
drawings, which was not significantly different from ei-
ther group). This implies that these excluded partici-
pants possessed some mechanistic knowledge, as they
were either introduced to the robot’s mechanism
through the Mechanistic Manipulation or discovered the
mechanism themselves during the Maze Navigation
Task, but that this knowledge was more fragile than the
High-Mechanistic group whose mechanistic knowledge
was reinforced by both the Mechanistic Manipulation
and their experiences during the Maze Navigation Task.

Although we argue that the Mechanistic Assessment
measured participants’ level of mechanistic knowledge of
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the robot, it is possible that the assessment’s questions target
a different construct. For example, the questions may be
measuring the importance that participants place on their
existing mechanistic knowledge (i.e., whether they consid-
ered the robot’'s motor and wheels important enough to in-
clude in their responses). However, even if the assessment
did not measure mechanistic knowledge per se, it is still
measuring how participants think about the robot, suggest-
ing that readily accessing mechanistic knowledge can influ-
ence the use of existing math knowledge.

Future directions: the relationships between physicality,
mechanistic knowledge, and mathematics strategies

The current study is an initial investigation into the use
of physical manipulatives as an embodied analogy onto
which math concepts can be applied, via mechanistic
knowledge about the manipulative’s parts and relation-
ships. While we show evidence that mechanistic knowledge
relates to math outcomes (in the form of mathematical
strategy use), we could not fully explore the relationship be-
tween physicality and mechanistic knowledge, as our study
only used a physical manipulative. The effect of mechanistic
knowledge may vary depending on the amount of percep-
tual detail that is encoded from the problem situation. For
example, effective use of mechanistic knowledge may re-
quire sufficient knowledge about the problem situation’s
component parts, which a physical or concrete environment
may provide, but a reduced virtual environment may not;
thus, the mechanistic knowledge effect may have diminished
if our study had used virtual robots instead of physical ro-
bots. Future studies could investigate this relationship, which
would provide further information about the effects of phys-
ical manipulatives on problem-solving strategies, as well as
the affordances of physical manipulatives. Furthermore, we
did not directly examine how participants were applying
mathematics onto the physical manipulative. Future studies
could investigate this more explicitly (e.g., through talk-
aloud protocols or questionnaires about strategy develop-
ment during the problem task).

The existence of embodied analogies could also be
tested more directly by comparing outcomes with a
range of mechanisms. Mechanisms that are particularly
complex or unrecognizable may be more difficult to use
as embodied analogies, as the regular relationships
among the mechanism’s parts will be harder to deter-
mine. Similarly, a mechanism that is irregular should not
be able to be used as an embodied analogy and should
yield no benefit to mathematical outcomes (beyond any
impacts from other physical affordances). Future studies
should test the relationship between mechanistic know-
ledge and mathematical strategies by comparing mecha-
nisms that should be more easily used as analogies
versus those that should not. Similarly, it would be of
interest to investigate whether the skill of recognizing
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mechanisms (i.e., identifying the parts and operations
involved in a system, and determining the underlying re-
lations) can be taught to students such that they are able
to independently and habitually apply this thinking to
novel mechanisms, and whether this would lead to
mathematical improvements.

Although we argue that mechanistic knowledge
supports mathematical strategy use, it was not possible
to conclusively establish the direction of this relationship
as our Mechanistic Manipulation was not wholly suc-
cessful (though again, it should be noted that similar re-
sults were found using several different criteria for
categorizing participants as High-Mechanistic versus
Low-Mechanistic). A large number of participants in the
original Low-Mechanistic condition were still able to
understand the robot’s mechanism after completing the
task. Though no participants included in analyses reported
prior experience with LEGO NXT robotics, the robot’s
mechanism is relatively simple and similar to mechanisms
regularly encountered in the real world (e.g, in vehicles),
which likely made it easy for participants to discover on
their own. Future studies should utilize a more novel mech-
anism that cannot be recognized without explicit instruction
to determine whether mechanistic knowledge causes more
complex mathematical strategy use.

The alternative exists that using mathematical strat-
egies may lead to greater mechanistic knowledge, such
that prior mathematical knowledge is used to make
sense of a mechanism. For example, Schwartz, Martin,
and Pfaffman (2005) asked students to determine
whether a balance scale would fall to the left or right. In
one condition, the balance scale was displayed such that
weight and distance were discrete and easily measurable
to promote mathematical strategies; in another condi-
tion, the balance scale was displayed such that weight
and distance were continuous and difficult to measure.
When 11-year-olds in the easy-to-measure condition
were asked to explain their reasoning or to show their
math, they solved the balance beam problems at a level
typical of adults, suggesting that mathematical strategies
helped them to understand the mechanisms of the
balance beam’s movements. In the current study, partici-
pants may have used their mechanistic knowledge to
generate mathematical strategies and inform their math-
ematical understanding of the robot (i.e., mechanism to
math); or, they may have first discovered the mathemat-
ical patterns between their inputted motor rotations and
the robot’s traveled distance and used that to understand
the robot’s mechanism (i.e., math to mechanism); or, there
may have been a constant conversation between their
mechanistic knowledge and mathematical strategies,
where discoveries about mechanistic and/or mathematical
patterns were used to inform and revise their understand-
ing of the other (ie, a reciprocal mechanism and math

Page 12 of 13

relationship). However, we note that Silk’s (2011) experi-
mental manipulation study also found that emphasizing
mechanism during instruction helped middle-school
students to think mathematically about robot motion
planning, suggesting that the direction of mechanism to
mathematics is particularly plausible in this context.

Another possibility is that the relationship between
mechanistic knowledge and mathematical strategy use is
confounded by general intelligence: people who are
more intelligent are simply more likely to create
complex navigation strategies and to understand the re-
lations between parts of the robot. However, this seems
implausible, as Paper Folding Test score (thought to cor-
relate with general intelligence, e.g., Visser et al., 2006)
was not a significant predictor of Maze Navigation Task
strategy and did not appear to be driving strategy choice.
Exposure to the robot may also act as another confound,
such that participants who spent more time with the
robot before the Maze Navigation Task were more likely
to understand its mechanisms and to generate mathem-
atical strategies. If this were the case, then participants
in the original High-Mechanistic condition should have
used more mathematical strategies than the original
Low-Mechanistic condition, as the original High-
Mechanistic condition had additional exposure time
(approximately 5 min) with the robot during the Mech-
anistic Manipulation; however, there were no significant
differences in strategy use using the Original Condition
assignment. Future studies may still wish to control for
exposure time by including another control condition in
which participants are exposed to the robot for the same
amount of time as the High-Mechanistic condition with-
out mechanistic instruction.

Conclusions

Many researchers have explored the role of physical ma-
nipulatives and embodied cognition in performance
learning. In the current study, we show that a particular
kind of reasoning is useful for capitalizing on manipula-
tives for building productive mathematical strategies
during problem solving. Specifically, high mechanistic
knowledge positively related to the frequency and com-
plexity of mathematical problem-solving strategies. The
current results suggest that emphasizing the underlying
mechanisms of a problem may be helpful for students,
allowing them to use manipulatives as an embodied ana-
logy for abstract math concepts and to connect applied
problems to the formal strategies learned in classrooms.
Encouraging students to dissect mechanisms into their
constituent parts and fully understand the relationships
between those parts may emphasize the regular behav-
iors and patterns that underlie an applied problem con-
text and are inherent to mathematics, fostering the
application of mathematical problem-solving strategies.
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