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A bonus task boosts people’s willingness 
to offload cognition to an algorithm
Basil Wahn1,2*†   and Laura Schmitz3† 

Abstract 

With the increased sophistication of technology, humans have the possibility to offload a variety of tasks to algo-
rithms. Here, we investigated whether the extent to which people are willing to offload an attentionally demanding 
task to an algorithm is modulated by the availability of a bonus task and by the knowledge about the algorithm’s 
capacity. Participants performed a multiple object tracking (MOT) task which required them to visually track targets 
on a screen. Participants could offload an unlimited number of targets to a “computer partner”. If participants decided 
to offload the entire task to the computer, they could instead perform a bonus task which resulted in additional 
financial gain—however, this gain was conditional on a high performance accuracy in the MOT task. Thus, partici-
pants should only offload the entire task if they trusted the computer to perform accurately. We found that partici-
pants were significantly more willing to completely offload the task if they were informed beforehand that the com-
puter’s accuracy was flawless (Experiment 1 vs. 2). Participants’ offloading behavior was not significantly affected 
by whether the bonus task was incentivized or not (Experiment 2 vs. 3). These results combined with those from our 
previous study (Wahn et al. in PLoS ONE 18:e0286102, 2023), which did not include a bonus task but was identical 
otherwise, show that the human willingness to offload an attentionally demanding task to an algorithm is consider-
ably boosted by the availability of a bonus task—even if not incentivized—and by the knowledge about the algo-
rithm’s capacity.

Keywords Cognitive offloading, Human–computer collaboration, Human–computer interaction, Social cognition, 
Algorithmic aversion, Algorithmic appreciation

Significance statement In today’s world, complex cogni-
tive tasks formerly reserved for humans start becoming 
feasible for computer algorithms. Consequently, humans 
encounter increasingly more opportunities to offload 
a variety of tasks to such algorithms. The present study 
investigates under which conditions people engage in 

this form of “cognitive offloading”. Our findings demon-
strate that people’s willingness to offload an attentionally 
demanding task to a computer algorithm is influenced by 
their knowledge about the algorithm’s capacity and by the 
possibility to engage in a bonus task. That is, people want 
to make sure that the offloaded work is performed well: 
they are more willing to offload if they have knowledge 
about the algorithm’s reliability. Also, people want to 
avoid boredom and stay engaged: they are more willing to 
offload if they themselves have another task to perform—
regardless of whether this task promises additional mon-
etary reward.
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Introduction
In today’s world, algorithms have been seamlessly inte-
grated into the daily life of many people. Indeed, for a 
variety of tasks, we almost naturally rely on algorithms—
be it when planning a route with the help of Google Maps 
(or a similar navigation app), when using a search engine 
on the internet, or when letting a thermostat control the 
heating in our home. Even complex cognitive tasks that 
used to be reserved for humans start becoming feasible 
for algorithmic artificial systems, such as driving a car 
(via automated driving systems) or writing a poem (via 
chatbots such as ChatGPT). Note that in the present 
article, we use the term “artificial systems” to refer to 
basic algorithmic systems without learning capabilities. 
We do not refer to—and thus do not aim to make claims 
about—more advanced AI technology that involves 
machine learning (such as self-driving cars and genera-
tive chatbots).

Despite the apparent prevalence of artificial systems in 
daily life, humans show diverging attitudes when it comes 
to trusting an algorithm, instead of another human, to 
perform certain tasks (Bigman & Gray, 2018; Dietvorst 
et  al., 2015; Logg et  al., 2019). Studies comparing the 
human willingness to offload tasks to another human 
vs. an artificial system have found so-called algorithmic 
aversion (i.e., a preference for humans over algorithms; 
see Bigman & Gray, 2018) as well as algorithmic appre-
ciation (i.e., a preference for algorithms over humans; see 
Logg et al., 2019). Whether people tend to show aversion 
or appreciation toward algorithms depends on a multi-
tude of factors (for a recent review, see Jussupow et  al., 
2020). One such factor is the extent of autonomy an 
algorithm possesses. In particular, people tend to show 
aversion if an algorithm performs an entire task auton-
omously (Dietvorst et al., 2015). This tendency for aver-
sion is observed especially once the algorithm commits 
an error—even if, overall, the algorithmic performance 
is still more accurate than that of a human (Dietvorst 
et al., 2015). In contrast, if an algorithm is not completely 
autonomous but takes on an advisory role only, humans 
tend to show appreciation (Logg et al., 2019), especially if 
the algorithm is known to be more capable than a human 
(Bigman & Gray, 2018). Thus, overall, people seem more 
likely to feel aversion toward an algorithm that performs 
a task autonomously compared to an algorithm in an 
advisory role.

Whereas the above-mentioned studies on algorith-
mic aversion/appreciation directly compared the human 
willingness to offload tasks to another human vs. an arti-
ficial system, other studies have focused on the condi-
tions under which humans are generally willing to offload 
cognition to artificial systems (Wahn et  al., 2023; Weis 
& Wiese, 2019a, 2019b, 2022; Wiese et  al., 2022). Such 

cognitive offloading, broadly defined as “the use of physi-
cal action to alter the information processing require-
ments of a task so as to reduce cognitive demand” (Risko 
& Gilbert, 2016, p. 676), can help humans to overcome 
cognitive capacity limitations (Marois & Ivanoff, 2005; 
Wahn & König, 2017) and thereby enable them to attain 
goals they could not have attained (as quickly, easily, or 
efficiently) otherwise. Cognitive offloading is omnipres-
ent in daily life. For example, by using a navigation app 
such as Google Maps to navigate in a foreign city, people 
reduce their own cognitive effort and free up capacity for 
other tasks. More recently, people have started offload-
ing even highly complex (and creative) cognitive tasks, 
e.g., when using chatbots such as ChatGPT to gener-
ate entire text documents (e.g., poems, essays, or paper 
abstracts), thereby minimizing the cognitive effort they 
exert themselves. Given that, in the near future, humans 
will encounter increasingly more such opportunities 
to offload cognition to artificial systems, it is timely to 
further investigate the factors influencing whether and 
to what extent humans are willing to engage in such 
offloading.

Previous research has already investigated cognitive 
offloading in a wide range of contexts (see Risko and Gil-
bert (2016), for a review) and has identified a number of 
tasks and factors that influence the human willingness 
to offload cognition (Weis & Wiese, 2019a, 2019b, 2022; 
Wiese et  al., 2022). In particular, one such factor seems 
to be the capability humans ascribe to an artificial sys-
tem. This was suggested, for instance, by Weis and Wiese 
(2019a, 2019b) who asked participants to solve a mental 
rotation task and gave them the option to manipulate a 
knob to physically rotate the given stimulus. Thus, par-
ticipants could reduce their own cognitive effort by off-
loading the rotation task to the knob. Importantly, the 
(actual and believed) reliability of that knob was system-
atically varied. Results showed that participants used 
the knob less frequently if its reliability was (believed to 
be) lower. In another study (Weis & Wiese, 2022), par-
ticipants were required to solve an arithmetic or a social 
task with the aid of an “assistant” which could be either 
another human, a robot, or an app. These assistants were 
described as having either task-specific or task-unspe-
cific expertise. It was found that offloading behavior was 
greatly influenced by the different descriptions (i.e., more 
offloading for task-specific vs. task-unspecific expertise), 
yet only for the app and less so for the human and robot. 
Moreover, it was found that participants preferred to 
offload the arithmetic task to robots that were described 
as being specifically skilled only in the arithmetic domain 
(Wiese et  al., 2022). Together, these previous findings 
suggest that people’s willingness to offload tasks to artifi-
cial systems can be influenced by the system’s (actual and 
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believed) reliability (Weis & Wiese, 2019a, 2019b) and by 
its (ascribed) expertise (Weis & Wiese, 2022; Wiese et al., 
2022).

Previous study
In our own recent study (Wahn et al., 2023), we extended 
the line of research on cognitive offloading by inves-
tigating offloading in a context with high attentional 
demands. Specifically, we asked whether and to what 
extent humans offload parts of a spatial attention task to 
an algorithm—and whether prior information about the 
capability of this algorithm affects the human tendency 
for offloading. To address this question, we conducted 
two behavioral experiments in which participants per-
formed a multiple object tracking (MOT) task (Pyly-
shyn & Storm, 1988). This task was chosen because it is 
frequently used to investigate the limits of attentional 
processing (Alvarez & Franconeri, 2007). Moreover, it 
has been previously used in studies on human–human 
(Wahn et  al., 2021a) and human–computer collabora-
tion (Wahn & Kingstone, 2021; Wahn et  al., 2021b). In 
the MOT task, participants are asked to track a subset 
of moving target objects among distractor objects on a 
computer screen. The human tracking capacity is lim-
ited such that participants can typically track maximally 
four objects (Intriligator & Cavanagh, 2001; but also 
see: Alvarez & Franconeri, 2007). It has also been shown 
that tracking is effortful and requires sustained attention 
over prolonged periods of time (e.g., Alnæs et al., 2014; 
Wahn et  al., 2016). In our previous study (Wahn et  al., 
2023), participants first performed the MOT task alone 
(Solo condition) and then had the opportunity to offload 
an unlimited number of targets to a computer partner 
(Joint condition). Based on earlier research, we had two 
opposing hypotheses: On the one hand, we predicted 
that participants might not offload the MOT task to an 
autonomous algorithm because humans generally seem 
to prefer algorithms that have an advisory function only 
(Dietvorst et  al., 2015; see above). On the other hand, 
given that the MOT task is attentionally demanding, we 
predicted that participants might (partially) offload the 
task to an algorithm to reduce their own cognitive effort 
(Risko & Gilbert, 2016)—in line with the offloading ten-
dencies humans show in daily activities. Furthermore, we 
reasoned that the second hypothesis seemed more likely 
because we used an experimental scenario with rather 
low stakes and human offloading tendencies may argu-
ably be stronger when no high stakes are involved (see 
Wahn et al., 2023).

Indeed, the results of our previous study showed that 
participants significantly offloaded some (but not all) 
targets to the computer partner, thereby improving their 
individual tracking accuracy. Specifically, participants 

tracked three targets on average in the Solo and two tar-
gets in the Joint condition, i.e., they offloaded one target 
to the computer partner. In a second experiment, partici-
pants were informed beforehand that the computer part-
ner’s tracking accuracy was flawless (in fact though, the 
computer performed at 100% accuracy in both experi-
ments). The results of the second experiment showed a 
similar tendency for offloading as observed in the first 
experiment.

In sum, our previous study (Wahn et al., 2023) indicates 
that humans are willing to offload parts of an attention-
ally demanding task to an algorithm. An open question 
that remained was the following: Why did participants 
not offload the complete task to the computer partner—
especially in the second experiment when they knew that 
the computer would perform the task flawlessly? In our 
previous work, we suggested two potential explanations. 
One explanation is that participants did not want to feel 
bored while passively waiting for the computer to finish 
the task. In other words, they preferred actively tracking 
some of the targets in order to stay engaged, rather than 
handing over all targets to the computer and not having 
any task of their own. Support for this hypothesis comes 
from a recent study which showed that people sometimes 
actually prefer cognitive effort over doing nothing (Wu 
et  al., 2023). An alternative explanation is that partici-
pants experienced some form of experimenter demand, 
i.e., they wanted to continue performing the task that the 
experimenter had asked (and paid) them to perform.

Present study
In the present study, we aimed to understand whether 
the aforementioned reasons might have prevented par-
ticipants in our previous study from offloading the entire 
task to the computer partner. To this end, we adjusted the 
task in a way that should facilitate participants’ willing-
ness to offload. In particular, we informed participants in 
the present study that, if they were to offload the MOT 
task entirely to the computer partner, then they could 
perform a bonus task while the computer performed 
the MOT task. This way, participants should feel free 
to offload the entire task—they should not feel bored 
nor should they have the impression to fall short of the 
experimenter’s demands. Moreover, we reasoned that 
giving participants the chance to perform a bonus task 
would arguably create a higher resemblance with offload-
ing situations in daily life when people decide to offload a 
certain task to an artificial system (e.g., let Google Maps 
compute the fastest route) in order to free up capacity to 
perform another task themselves (e.g., start the car). In a 
second step, we tested whether participants would per-
form the bonus task only if it was financially incentivized 
or also if it came without additional incentive.
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As in our previous study and in line with earlier 
research (see above; Weis & Wiese, 2019a, 2019b, 2022; 
Wiese et  al., 2022), we included the computer partner’s 
capacity as an additional factor in the present study. That 
is, we varied whether participants were informed about 
the computer’s capacity or not, such that participants 
either did not receive any information about the comput-
er’s capacity (Experiment 1) or were explicitly informed 
that the computer was flawless (Experiment 2). As in our 
previous study, the computer’s tracking accuracy was 
actually 100% in both experiments. Experiment 3 was 
identical to Experiment 2 except that the bonus task was 
not incentivized (see below for details).

Materials and methods
Participants
We collected data from 78 university students, with 
26 participants taking part in each of our three experi-
ments. All students attended the same university (and 
most of them were enrolled in the same study program) 
and the three participant samples were comparable in 
age range and gender identity ratio, with Experiment 
1 (M = 25.96  years, SD = 5.67  years, 19 female, 6 male, 
1 diverse), Experiment 2 (M = 25.58 years, SD = 5.33, 
22 female, 4 male), and Experiment 3 (M = 23.69 years, 
SD = 3.97 years, 20 female, 5 male, 1 diverse). The sam-
ple size was matched to our previous study (Wahn et al., 
2023).1 Additionally, a Power analysis conducted with 
G*Power (Faul et al., 2009) showed that the chosen sam-
ple size provides sufficient power to detect medium-sized 
effects for within-subjects comparisons (Cohen’s d = 0.58, 
Power = 0.80; alpha = 0.05, two-sided paired samples 
t-test) and large effects for between-subjects com-
parisons (Cohen’s d = 0.80, Power = 0.80; alpha = 0.05, 
two-sided two-sample t-test). Participants gave their 
informed consent prior to the experiment and received 
15 EUR as compensation (base payment). If they chose 
to perform the bonus task, they could additionally earn 
up to 5 EUR or lose 5 EUR off the base payment (only 
in Experiments 1 and 2; for details, see below). The Eth-
ics Committee of the Institute of Philosophy and Educa-
tional Research at Ruhr University Bochum approved the 
study (EPE-2023–003).

Experimental setup and procedure
We followed the same procedure as in our previous study 
(Wahn et al., 2023). The only difference was that we inte-
grated the above-mentioned bonus task into our experi-
mental design.

Participants were seated at a distance of 90 cm in front 
of a 24′′ computer screen (refresh rate: 60  Hz, resolu-
tion: 1920 × 1080), with a keyboard and mouse placed 
within easy reach. Experiment 1 started with a Solo con-
dition in which participants performed the MOT task 
alone. This was followed by a Joint condition in which 
participants were given the option to offload (parts of ) 
the MOT task to a so-called computer partner (i.e., an 
algorithm). The two conditions were always performed in 
this order because we wanted participants to first learn 
about their own maximum tracking load (i.e., the num-
ber of targets they could successfully track) before decid-
ing how many targets to offload to the computer. Before 
participants started the Solo condition, the experimenter 
explained the task procedure and instructed participants 
to perform two training trials so that they could familiar-
ize themselves with the procedure. Another two training 
trials were performed before the start of the Joint condi-
tion. The experiment consisted of 75 trials in total, with 
25 trials in the Solo and 50 trials in the Joint condition.

Solo condition
Each trial started with a display of 19 stationary objects 
(circles) on the screen (see Fig. 1). Out of these, six ran-
domly selected objects were highlighted in white—these 
were the “targets”. The remaining 13 objects served as 
“distractors” and were colored in gray. Participants were 
instructed to select all those targets (i.e., between 0 and 
6) that they wanted to track in that trial. To do so, par-
ticipants selected the targets via mouse click and then 
confirmed the selection by clicking on a dot in the center 
of the screen. Once the selection was confirmed, the 
highlighted targets switched color such that all objects 
(targets and distractors) were now colored in gray and 
looked indistinguishable. All objects then started mov-
ing across the screen in randomly selected directions. 
Objects repelled each other and the screen borders in a 
physically plausible way such that the angle of incidence 
equaled the angle of reflection. After 11  s, the objects 
stopped moving and participants were instructed to click 
on those targets that they had selected at the beginning of 
the trial. The selected targets turned yellow. Again, target 
selection needed to be confirmed by clicking on the dot 
in the center of the screen. This marked the end of the 
trial. See Fig. 1 (1st row) for an exemplary trial sequence.

The goal for participants was to identify as many tar-
gets as possible without making mistakes. For each 

1 Please note that the participant sample from our previous study (Wahn 
et  al., 2023) was also comparable to the present study in terms of demo-
graphics. Moreover, both studies were conducted by the same experimenter 
at the same university in the same experimental laboratory. Finally, all five 
experiments from the previous and present study combined took place 
within the time span of approximately 18 months. There was no participant 
overlap between any of the experiments.
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correctly identified target, participants earned one point. 
For each incorrect selection, they lost one point.

Joint condition
Joint procedure The task and procedure was identical to 
the Solo condition except that participants were now told 
that those targets that they did not select themselves will 
be selected and tracked by the computer partner. In other 
words, participants had the chance to offload as many 
targets as they wished to an algorithm. Thus, at the start 
of each trial, participants first selected their targets and 
confirmed their selection, and the remaining targets were 
then highlighted in violet to indicate that these had been 
selected by the computer partner (see Fig. 1). For exam-
ple, if a participant selected four out of the six targets, the 
remaining two targets were automatically selected by the 
computer partner. Then all objects started moving across 
the screen (with targets and distractors looking identical). 
After 11 s, the objects stopped moving and participants 
were asked to click on their previously selected targets. 
After participants confirmed their selection, the remain-
ing targets were selected by the computer partner. The 
targets selected by the participant turned yellow; those 
selected by the computer turned violet. Participants then 
confirmed with the space bar that they had seen the com-
puter’s selection, thereby marking the end of the trial. See 
Fig. 1 (2nd row) for an exemplary trial sequence.

Joint task goal The goal for participants was to identify, 
jointly with the computer partner, as many targets as pos-
sible without making mistakes. As in the Solo condition, 
participants earned one point for each correctly identi-
fied target and lost one point for each incorrect selection. 

Importantly though, the same rule applied to the targets 
selected by the computer partner such that the total score 
consisted of the sum of participants’ own and the com-
puter’s points.

Note that in our previous study (Wahn et  al., 2023), 
participants also had the option to offload an unlimited 
number of targets to the computer in the Joint condi-
tion. We then compared how many targets participants 
chose to track in the Joint condition relative to the Solo 
condition. If, for example, a participant chose to track 
two targets in the Joint and three targets in the Solo con-
dition, this meant that in the Joint condition they had 
“offloaded” one target to the computer. Importantly, in 
our previous study, participants were free to offload all 
targets to the computer (i.e., the entire MOT task). How-
ever, this would leave them effectively without any task to 
perform themselves. The results from our previous study 
showed that participants did not offload the entire task. 
As mentioned above, potential explanations for this find-
ing are that participants did not want to feel bored while 
passively waiting for the computer to finish the task, or 
that they did not want to fall short of the experimenter’s 
demand (i.e., they felt that they could not simply sit back 
and wait for the computer to do the task but needed to 
contribute something).

In the present study, we aimed to exclude that these two 
potential factors (boredom and experimenter demand) 
could influence participants’ offloading decision. There-
fore, we introduced a bonus task that participants could 
perform if they decided to completely offload the MOT 
task to the computer. As a bonus task, we chose an estab-
lished pen and paper mental rotation task (Vandenberg 
& Kuse, 1978; we used the version by Peters et al., 1995). 

Fig. 1 1st row: Example trial for the Solo condition. 2nd and 3rd row: Example trial for the Joint condition when participants chose to offload 
a subset of targets to the computer partner (2nd row) or to offload all targets (i.e., the entire MOT task) to the computer partner and to perform 
the mental rotation (MR) task instead (3rd row)
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It required participants to mentally rotate a target figure 
in order to identify with which of four rotated figures it 
matches (see bottom row of Fig.  1, for an example). In 
fact, two of the four rotated figures matched the target 
figure but participants needed to identify only one. We 
chose this mental rotation task as a bonus task because 
it requires sustained spatial attention, just like the MOT 
task. This way, we made sure that participants performed 
either the MOT task or the mental rotation task—it was 
not possible to properly perform both spatial tasks at 
the same time (e.g., Wahn & König, 2015). Thus, par-
ticipants had to focus their attention either on the com-
puter screen (MOT task) or on the paper in front of them 
(mental rotation task).

In each trial, participants could decide whether to 
offload the entire MOT task (i.e., to offload all targets) or 
not (i.e., to offload only a subset of targets, or no targets 
at all). If they chose to offload the task completely, this 
meant that the computer partner tracked all six targets 
while the participant could complete one item of the 
mental rotation bonus task. Participants could adjust 
their offloading choice on a trial-by-trial basis. For exam-
ple, they might choose to offload the MOT task com-
pletely in one trial and perform the bonus task, and, in 
the next trial, they might choose to track three targets 
and offload three targets to the computer.

Bonus task incentive in joint condition Importantly, par-
ticipants were told that they could earn additional money 
for each correctly solved mental rotation item (10 cents 
per item). Thus, if participants decided to completely 
offload the MOT task in all 50 trials, and if they solved 
all mental rotation items correctly, then they would earn 
5 EUR (50 × 10 cents) in addition to the base payment of 
15 EUR. However, this additional financial gain was con-
ditional on the fact that the overall accuracy in the MOT 
task was at least 90%. If this accuracy threshold was not 
met, the bonus task would not be rewarded and 5 EUR 
would be deducted from participants’ base payment such 
that they would receive only 10 EUR in the end. The pay-
off structure was implemented in this way to convey to 
participants that they should only offload the entire MOT 
task if they trusted the computer, i.e., if they believed that 
the computer would perform the MOT task with high 
accuracy. If the computer performed the MOT task accu-
rately and participants solved all bonus task items accu-
rately, then participants’ total reward would be 20 EUR. 
However, if the computer did not perform the MOT task 
accurately, participants would end up with 10 EUR only 
(regardless of their own performance in the bonus task). 
In fact, the computer’s tracking accuracy was 100% (i.e., 
its target selections were always correct) but participants 
in Experiment 1 were not informed about this. If partici-

pants did not engage in offloading at all (i.e., did not per-
form the bonus task), they would receive the base pay-
ment of 15 EUR.

Questionnaires
After participants completed the Solo and Joint condi-
tions, they were asked if they had completely offloaded 
the MOT task to the computer partner (in some or all 
trials). They were also asked to specify their reasons for 
offloading. Note that the word “offload” was not explic-
itly used in these questions. Furthermore, participants 
were asked to indicate how many targets they believed 
the computer partner could track accurately (on a scale 
from “0 targets” to “more than 6 targets”). The last option 
on the scale (“more than 6 targets”) was included to test 
whether participants believed that the capacity of the 
computer was virtually unlimited such that it could, in 
principle, also track more than six targets (if more were 
available).

Next, participants were asked to fill in a set of ques-
tionnaire items that capture personal characteristics. 
We hypothesized that participants’ replies to these items 
might be informative with regard to the factors that influ-
ence a person’s willingness to offload tasks to an artificial 
system. The set consisted of the Desirability of Control 
Scale (20 items; Burger & Cooper, 1979), the Trust in 
Automation Scale (3 items-subset; Körber, 2019), and the 
Affinity for Technological Systems Scale (9 items; Franke 
et al., 2019). The three items from the Trust in Automa-
tion Scale were asked in their original wording. In addi-
tion, we adapted the remaining seven items from that 
Scale such that the items now referred specifically to the 
computer partner from the experiment (rather than to 
automated systems in general). This adaption was done 
to understand how participants perceived the reliability 
and competence of the computer partner (rather than of 
any generic automated system). All questionnaire items 
(in German), as well as links to the English translation, 
are provided in the Additional file  1: Supplementary 
Material S2.

Experiments overview
We conducted three experiments. In each experiment, a 
different group of participants underwent exactly the same 
procedure. The computer’s tracking accuracy was 100% in 
all experiments. The crucial difference between Experi-
ment 1 versus Experiments 2 and 3 was that in Experiments 
2 and 3, participants were explicitly informed about the 
computer’s capacity (“computer capacity known”; see Addi-
tional file 1: Supplementary Material S2 for the exact word-
ing in German) whereas participants in Experiment 1 were 
not informed (“computer capacity unknown”). The crucial 
difference between Experiment 3 versus Experiments 1 and 
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2 was that in Experiment 3, the bonus task came without 
any potential additional financial gain; all participants in 
Experiment 3 were paid the base payment of 15 EUR.

Technical
We programmed the experiments in Python 3.0 with the 
pygame library. Participants took about 75 min to complete 
the experiment and the questionnaires. We performed all 
analyses in R using customized R scripts.

Data analysis
For all pairwise comparisons (i.e., comparisons between 
two within- or between-subjects conditions), we used 
dependent and independent t-tests. For within-subjects 
comparisons that involved more than two conditions 
and/or more than one factor, we used linear mixed mod-
els (LMMs). We chose LMMs instead of within-subjects 
ANOVAs because LMMs allow for a more precise mod-
eling of the data (via the inclusion of random intercepts 
and slopes for each participant) and because, with LMMs, 
it is possible to include non-categorical factors (e.g., time 
course). For between-subjects comparisons that involved 
more than two conditions and/or more than one factor, we 
used a multiple linear regression (MLR). We chose a MLR 
instead of a between-subjects ANOVA because we aimed 
to perform a step-wise regression to assess the variance 
explained by our questionnaire scales on top of the vari-
ance explained by the experimental factors. For comparing 
frequencies, we used a standard Chi-squared test.

We will first report the results for Experiments 1 and 2, 
focusing on the knowledge manipulation (computer capac-
ity known/unknown), see Fig.  3. Next, we will report an 
analysis that combines data from Experiments 1 and 2 with 
the two experiments from our previous study (Wahn et al., 
2023). This analysis gives us a 2 × 2 between-study design 
with the between-study factor “Bonus task” (with, with-
out), with a bonus task present in the current but absent in 
our previous study, and the within-study factor “Computer 
capacity” (known, unknown); see Fig.  6. Finally, we will 
report the results for Experiment 3, focusing on the incen-
tive manipulation (bonus task with/without incentive). 
To do so, we compare Experiment 3 (bonus task without 
incentive) to Experiment 2 (bonus task with incentive) and 
to Experiment 2 from our previous study (no bonus task); 
see Fig. 7.

Results
Experiments 1 and 2: Does knowledge 
about the computer’s capacity affect offloading?
To address the question of whether humans are willing to 
completely offload an attentionally demanding task to an 
algorithm, we first computed the percentage of trials in 
which participants offloaded all targets to the computer 

partner and performed the bonus task instead. We found 
that participants completely offloaded the MOT task 
in 51% of trials in Experiment 1 and in 82% of trials in 
Experiment 2 (see Fig. 2 for a descriptive overview). The 
offloading frequency was significantly higher in Experi-
ment 2 compared to 1 (t(50) = 3.30, p = 0.002, Cohen’s 
d = 0.91), indicating that participants who received infor-
mation about the computer partner’s accuracy before-
hand (in Experiment 2) were more likely to offload the 
entire task. Note that participants’ offloading behavior 
did not change throughout the course of the experiment 
(see Additional file  1: Supplementary Material S1 for 
additional analysis).

After having looked at the specific case of complete 
offloading (i.e., taking into account only trials in which 
participants offloaded the entire MOT task), we then 
analyzed participants’ overall—partial and complete—
offloading behavior. For this purpose, we calculated an 
“offloading percentage” to capture the relative tracking 
load that participants offloaded to the computer partner. 
This percentage was computed as the number of targets 
participants offloaded in the Joint condition divided by 
the number of targets they tracked in the Solo condition, 
multiplied by 100. If, for instance, a participant tracked 
three targets in the Solo condition but only one target in 
the Joint condition, this participant offloaded two tar-
gets to the computer. Their offloading percentage would 
thus be 2/3 targets, hence 66%. If participants chose to 
perform the bonus task in all trials of the Joint condi-
tion, their offloading percentage would be 100%. When 
comparing participants’ offloading percentage between 
Experiments 1 and 2, we found that it was significantly 
higher in Experiment 2 (85%) compared to Experiment 
1 (55%), t(50) = 3.17, p = 0.003, d = 0.88. For a descriptive 
overview, see Fig. 3.

In a next step, we aimed to rule out alternative expla-
nations for why the observed offloading behavior differed 
between experiments. Specifically, we tested whether 
participants’ performance in the Solo condition (track-
ing accuracy and number of selected targets) differed 
between experiments. Theoretically, if participants dif-
fered in their individual performance in the Solo con-
dition, this might also explain differences in the Joint 
condition. For example, participants in Experiment 2 
might have found the MOT task generally more dif-
ficult (in the Solo condition) and thus might have pre-
ferred to offload it more often in the Joint condition. 
Comparing tracking accuracy and number of selected 
targets between experiments, we found that partici-
pants performed with high accuracy both in Experi-
ment 1 (M = 0.95, SD = 0.05) and Experiment 2 (M = 0.94, 
SD = 0.07). Accuracy did not differ significantly between 
experiments (t(50) = 0.60, p = 0.549, Cohen’s d = 0.17). 
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Secondly, we found that, on average, participants tracked 
the same number of targets in the Solo condition in 
Experiment 1 (M = 3.11, SD = 0.47) and Experiment 2 
(M = 3.11, SD = 0.67). Again, there was no significant 
difference between experiments (t(50) = 0.01, p = 0.992, 
Cohen’s d = 0.00). Thus, we can rule out that the observed 
differences in offloading behavior between experiments 
can be alternatively explained by differences in individual 
performance. Note that both tracking accuracy and num-
ber of selected targets were also similar in the Solo condi-
tion of our previous study (Wahn et al., 2023).

Furthermore, we checked participants’ accuracy in the 
mental rotation task and found that participants per-
formed with high accuracy in Experiment 1 (M = 0.84, 
SD = 0.21) and Experiment 2 (M = 0.89, SD = 0.09). Accu-
racy did not differ significantly between experiments 
(t(44) = 0.91, p = 0.367, Cohen’s d = 0.27).

However, before being able to attribute the differ-
ence in offloading behavior to participants’ prior belief 
about the computer’s accuracy, we needed to check 
that participants in Experiment 2 indeed believed the 
prior information we provided them with (i.e., the 

statement that the computer’s accuracy was 100%). 
Thus, we assessed how participants rated the com-
puter’s capacity in Experiment 2 and found that the 
majority of participants (24/26) rated it as 6 (or more) 
targets, with six being the maximum number of to-
be-tracked targets (see Fig.  4 for a descriptive over-
view). This suggests that most participants believed 
the prior information and consequently assumed that 
the computer’s tracking capacity was high enough to 
completely take over the MOT task. In contrast, in 
Experiment 1, only ~ 60% of the participants (16/26) 
rated the capacity as 6 (or more) targets. Compar-
ing the frequencies between experiments using a χ2 
test, we found that they did not differ significantly 
(χ2(5) = 8.17, p = 0.123).

To get an understanding of the reasons behind par-
ticipants’ decision to completely offload the MOT task 
and perform the bonus task instead, we categorized 
participants’ responses to the open-ended question 
(“What were your reasons for completely offloading the 
MOT task to the computer partner?”) into the follow-
ing four categories:

Fig. 2 Percentage of trials in which participants completely offloaded the MOT task to the computer partner, shown separately for Experiment 1 
(left) and Experiment 2 (right). Error bars are Standard Error of the Mean
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(1) Avoid boredom Participants wanted to perform the 
bonus task to stay engaged, not feel bored, to have 
fun, or to meet a new challenge.

(2) Monetary gain/productivity Participants wanted 
to perform the bonus task to earn more money 
in total. Two participants said that they aimed to 
increase the overall productivity (i.e., their own and 
the computer’s productivity combined); we classi-
fied these responses into the same category.

(3) Trust the computer Participants trusted the com-
puter partner to perform the MOT task accu-
rately. Participants either said that they trusted the 
computer blindly or they specified that they first 
checked the computer’s accuracy by monitoring the 
computer’s performance in the MOT task for a few 
trials.

(4) No offloading Participants did not completely 
offload the MOT task to the computer partner.

Figure  5 shows an overview of the frequencies with 
which these four responses were reported. Note that par-
ticipants could also provide multiple responses—indeed, 
eight participants in Experiment 1 and 13 participants 
in Experiment 2 provided more than one reason for 

offloading. We included all responses into the frequency 
distribution. On a descriptive level, we found that “Avoid 
boredom” has a high frequency in both experiments and 
that “Trust computer” has a considerably higher fre-
quency in Experiment 2 (16x) compared to Experiment 1 
(10x). When comparing experiments using a Chi Square 
test, we found that the overall frequency distribution 
significantly differed (χ2(4) = 12.41, p = 0.015). Note that 
when we excluded all “No offloading”-responses, the 
comparison was not significant (χ2(3) = 6.20, p = 0.102).

Experiments 1 and 2 versus previous study: Does a bonus 
task facilitate offloading?
We next assessed how the offloading extent differed 
between the present and our previous study (Wahn 
et  al., 2023). To be able to compare experiments in the 
two studies, we introduced the between-study factor 
“Bonus task” (with, without), with a bonus task present 
in the current but absent in our previous study (Wahn 
et al., 2023). The second, within-study factor was “Com-
puter capacity” (known, unknown), which captures the 
difference between Experiment 1 (in which participants 
were not informed about the computer’s capacity) and 
Experiment 2 (in which participants were informed that 

Fig. 3 Offloading percentage for Experiment 1 (left) and Experiment 2 (right). Errors bars are Standard Error of the Mean
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the computer’s tracking accuracy was 100%). This factor 
was the same in our present and previous study. For a 
descriptive overview of the results, see Fig. 6.

We computed a MLR model with offloading per-
centage as dependent variable and the categorical fac-
tors Bonus task (with, without) and Computer capacity 

Fig. 4 Rated capacity of the computer partner in Experiment 1 (left) and Experiment 2 (right)

Fig. 5 Reasons for offloading in Experiment 1 (left) and Experiment 2 (right)
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(known, unknown) and the interaction term between 
these two factors. Overall, the model was significant 
(F(3,100) = 19.84, p < 0.001). Specifically, the two factors 
Bonus task and Computer capacity were significant but 
the interaction was not (see Model 1 in Table 1).2 These 
findings suggest that the availability of a bonus task as 
well as explicit knowledge about the computer’s capacity 
significantly increased participants’ tendency for offload-
ing. A comparison of the regression weights (see Model 1 
in Table 1) shows that the factor bonus task contributes 
more toward explaining the variance in offloading per-
centage than the factor computer capacity. The squared 
semi-partial correlations (bonus task: sr2 = 0.28; com-
puter capacity: sr2 = 0.08), which quantify the unique 
variance explained by the respective factor, show that the 
factor  Bonus task explains 28% of the variance whereas 
the factor Computer capacity explains 8% of the variance.

Fig. 6 Offloading percentage, displayed as a function of Bonus task (with, without) and Computer capacity (known, unknown). Note that the data 
in the left panel (“with bonus task”) represent Experiment 1 (Unknown) and 2 (Known) from the present study (compare Fig. 3), whereas data 
in the right panel (“without bonus task”) are taken from Experiments 1 and 2 from our own previous study (Wahn et al., 2023). Errors bars are 
Standard Error of the Mean

Table 1 Results of a linear regression model with the between-
study factor Bonus task and the within-study factor Computer 
capacity (Model 1), and a model that additionally includes our 
questionnaire data (Model 2)

All regression weights are standardized. As such, an increase in one standard 
deviation unit in the respective predictor corresponds to an increase of the beta 
coefficient value in the dependent variable. Standard Error of the Mean of non-
standardized coefficients are in brackets

***p < 0.001; **p < 0.01; *p < 0.05

Model 1 Model 2

Computer capacity − 0.38** (8.76) − 0.28* (8.83)

Bonus task − 0.63*** (8.76) − 0.58*** (8.59)

Computer capacity * Bonus task 0.17 (12.38) 0.11 (12.10)

Desire to control − 0.03 (0.26)

Reliability/competence of computer 
partner

0.25** (7.13)

Affinity for technological system 0.07 (2.07)

R2 0.37 0.44

Adj. R2 0.35 0.41

Num. obs 104 104

2 Please note that the same result pattern is obtained with a standard 
ANOVA.
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We then pooled our questionnaire data on personal 
characteristics from the present and previous study 
(Wahn et al., 2023), resulting in an N = 104. We assessed 
the reliability of all questionnaire scales using Cronbach’s 
alpha (Cronbach, 1951) and found that the scales Desir-
ability of Control (r = 0.80), Affinity for Technological 
Systems (r = 0.90) and Reliability and Competence of the 
Computer Partner (r = 0.79) had satisfactory reliabilities. 
The reliability of the Trust in Automation scale, how-
ever, was too low (r = 0.60), and the scale was thus not 
included in the analysis (a Cronbach’s alpha of at least 
0.70 is considered acceptable for research purposes; see 
Taber, 2018). In a step-wise regression, we added the 
three reliable questionnaire scales as continuous pre-
dictors to our MLR model above. A model comparison 
showed that the addition was significant (F(3,97) = 4.13, 
p = 0.008), suggesting that the questionnaire scales 
explain 7% additional variance. When examining the 
model predictors, we found that Reliability and Compe-
tence of the Computer Partner was a significant predictor 
whereas the other two predictors were not (see Model 2 
in Table 1). This correlational finding, however, must be 
interpreted with a bit of caution given that our current 
sample size (N = 104) may not suffice to obtain a stable 
correlation (see Schönbrodt & Perugini, 2013).

Experiment 3: What role does a financial incentive play?
Combining the results from Experiments 1 and 2 with the 
results from our previous study showed that the availabil-
ity of a bonus task facilitated participants’ willingness to 
offload such that participants showed an increase in off-
loading when a bonus task was available (present study) 
compared to when it was not (previous study). However, 

it is an open question whether participants in the present 
study chose to perform the bonus task simply because 
they wanted to stay engaged or because they aimed to 
gain additional money. The questionnaire results (see 
Fig. 5) show that some participants wanted to avoid bore-
dom but others wanted to maximize monetary gain. To 
disentangle the influence of these two factors on offload-
ing behavior, we carried out Experiment 3. As mentioned 
above, Experiment 3 was identical to Experiment 2 with 
the only difference that the bonus task came without 
financial incentive, i.e., participants could neither earn 
nor lose any money (all received the same base payment).

In Experiment 3, participants completely offloaded the 
MOT task in 57% of all trials (Exp. 1: 51%, Exp. 2: 82%). 
The overall offloading percentage was 68% (Exp. 1: 55%, 
Exp. 2: 85%). Participants’ accuracy in the mental rota-
tion task was high (M = 0.89, SD = 0.11), comparable 
to Experiments 1 (M = 0.84, SD = 0.21) and 2 (M = 0.89, 
SD = 0.09). As in Experiment 2, the majority of partici-
pants (25 out of 26) rated the computer’s capacity as 6 
(or more) targets, suggesting that participants in fact 
believed that the computer was able to perform the MOT 
task accurately. When asked why they offloaded the 
task to the computer, 11 participants reported that they 
wanted to avoid boredom and 10 participants said that 
they trusted the computer.

To focus on the effect of the availability of an (incentiv-
ized) bonus task, we chose to compare the offloading per-
centage across three experiments (see Fig. 7): Experiment 
2 from our previous study (no bonus task), Experiment 
2 from the present study (bonus task with incentive), 
and Experiment 3 from the present study (bonus task 
without incentive). In all of these selected experiments, 

Fig. 7 Offloading percentage as a function of monetary incentive and bonus task availability. Errors bars are Standard Error of the Mean
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participants were explicitly informed about the computer 
partner’s capacity.

We ran a MLR model with “Experiment” as between-
subject factor and “offloading percentage” as dependent 
variable, specifying “Experiment 3” as a reference group. 
This model tests if there is a main effect of Experiment 
and it also runs pairwise comparisons between Experi-
ment 3 and the other two experiments. Results showed 
that the model was significant, F(2,75) = 15.75, p < 0.001, 
R2 = 0.30. The offloading percentage was significantly 
higher (by 32%) for Experiment 3 relative to Experi-
ment 2 from the previous study without any bonus task 
(t = − 3.60, p = 0.001), suggesting that the addition of a 
bonus task increased participants’ willingness to offload. 
The offloading percentage between Experiment 3 (with-
out incentive) and Experiment 2 (with incentive) also dif-
fered numerically (68% vs. 85%), yet this difference was 
not significant, t = 1.93, p = 0.057.

Discussion
In the present study, we investigated under which con-
ditions people are willing to offload an attentionally 
demanding task (i.e., a multiple object tracking (MOT) 
task) to an algorithm. We assessed whether people’s 
willingness to offload is affected by the availability of an 
(incentivized) bonus task and by participants’ knowledge 
about the algorithm’s capacity. Additionally, we assessed 
whether certain personal characteristics predict offload-
ing and we also aimed to find out about people’s subjec-
tive reasons for offloading.

We based this study on the results of a recent study 
of our own (Wahn et al., 2023), with the goal to extend 
those results and clarify open questions. In our previ-
ous study, participants performed the same MOT task 
as in the present study. This task requires participants to 
track a subset of moving targets among distractors on a 
computer screen. Participants in our previous study first 
performed the MOT task alone and then had the oppor-
tunity to offload an unlimited number of targets to a 
computer partner (which was effectively an algorithm). 
Participants chose to offload the MOT task partially, 
but never completely, to the computer partner; i.e., they 
always continued tracking a subset of targets themselves. 
We hypothesized that participants’ offloading behavior 
might have been influenced by their wish to avoid bore-
dom and/or to meet the experimenter’s demands. That 
is, their decision not to offload the complete task but to 
continue performing (at least parts of ) the task them-
selves might not have been motivated by potential dis-
trust toward the computer partner but rather by the wish 
to stay engaged (instead of passively waiting for the com-
puter to finish the task) and/or by the experienced duty 

to complete the “work” they were being paid for in the 
context of the experiment.

The aim of the present study was to understand 
whether the aforementioned reasons might have pre-
vented participants in our previous study from offloading 
the entire task to the computer partner. To this end, we 
adjusted the task in a way that should facilitate partici-
pants’ willingness to offload. Specifically, we kept every-
thing comparable to our previous study except that now 
we informed participants that, if they were to offload the 
MOT task completely to the computer partner, then they 
would be able to perform a bonus task while the com-
puter performed the MOT task. This way, participants 
should feel free to offload the entire task—they should 
not feel bored nor should they have the impression to 
fall short of the experimenter’s demands. Successful per-
formance in the bonus task resulted in additional finan-
cial gain (in Experiments 1 and 2). However, this gain 
was conditional on a high performance accuracy in the 
MOT task. Thus, participants should only offload the 
MOT task if they trusted the computer to perform this 
task accurately. In a third Experiment, we tested to what 
extent the additional financial gain actually affected par-
ticipants’ offloading willingness.

It is worthwhile mentioning that in most previous 
research, the term offloading is understood as partial 
offloading, in the sense that participants could offload 
only parts of a task—and not the entire task—while per-
forming the remaining parts themselves. In contrast, in 
the present study, we were also interested in whether 
and under which conditions people are willing to offload 
an entire task. Yet, of course there is a clear difference 
between delegating only parts of a task (to reduce cogni-
tive demand, see Risko and Gilbert (2016)) and handing 
over an entire task (to free resources for another task). 
We thus suggest to introduce the distinction between 
what we have here called partial and complete offloading 
(i.e., in the present task, the distinction between offload-
ing a subset of to-be-tracked targets vs. all targets).

As in our previous study and in line with earlier 
research (Weis & Wiese, 2019a, 2019b, 2022; Wiese et al., 
2022), we included “knowledge of the computer’s capac-
ity” as an additional factor in the present study. That is, 
we varied whether participants were informed about the 
computer’s capacity (Experiment 2 and 3) or not (Experi-
ment 1). As in our previous study, the computer’s track-
ing accuracy was 100% in all experiments, i.e., it always 
performed the MOT task flawlessly regardless of how 
many targets it was assigned to track.

We found that participants completely offloaded the 
MOT task on average in ~ 50% of all trials (Experiment 
1), i.e., they performed an equal amount of trials in which 
they offloaded the complete MOT task to the computer 
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while performing the bonus task themselves, and trials 
in which they offloaded the MOT task only partially and 
continued tracking a subset of targets themselves. The 
willingness to completely offload increased significantly 
(up to 80%) if participants were informed beforehand that 
the computer’s tracking accuracy was flawless (Experi-
ment 2). To test whether the availability of a bonus task 
affected participants’ willingness to offload, we compared 
the results of Experiments 1 and 2 of the present study 
with the results from our previous study which did not 
involve a bonus task but was identical otherwise. When 
comparing the offloading percentage (i.e., the percentage 
of the task load that participants offloaded to the com-
puter partner relative to the Solo condition) across stud-
ies, we found that participants’ offloading percentage 
was significantly higher in the present study compared 
to our previous study (Wahn et  al., 2023; 70% vs. 28%). 
This suggests that the availability of a bonus task facili-
tates people’s willingness for offloading. Together, our 
findings indicate that people’s willingness to offload an 
attentionally demanding task to an algorithm is boosted 
by the knowledge about the algorithm’s capacity and by 
the availability of a bonus task (see Fig. 6).

When asked about their reasons for completely offload-
ing the task to the computer, participants in the present 
study most frequently reported that they offloaded the 
task because they trusted the computer and because they 
wanted to try out the bonus task to avoid boredom and 
stay engaged. Thus, on the one hand, people wanted to 
make sure that the offloaded work was performed well: 
they were more willing to offload if they had informa-
tion about the computer’s reliability and could thus trust 
it blindly (see Experiment 1 vs. 2). Moreover, it mattered 
that people did not face the alternative of doing noth-
ing when offloading their work: they were more willing 
to offload if they themselves had another task to perform 
(present study with bonus task vs. previous study with-
out bonus task). This latter finding is in line with recent 
research showing that people sometimes rather choose to 
engage in cognitive effort if the alternative is doing noth-
ing (Wu et al., 2023). Indeed, our study suggests that the 
primary motivation for people’s willingness to offload a 
task may not always be the reduction of cognitive effort 
but rather, for instance, the motivation to avoid boredom 
and try out something new.

In addition to the two reasons mentioned above, par-
ticipants also reported that they performed the bonus 
task to maximize monetary gain—consistent with the 
theoretical account that people choose offloading inso-
far as it maximizes reward (Gilbert, 2023). To address 
this factor, we carried out Experiment 3 in which partici-
pants had the option to perform a bonus task (just as in 
Experiment 2) but did not receive any additional financial 

reward for it. However, we did not find a significant dif-
ference between the offloading behavior in Experiment 
3 (without incentive) and Experiment 2 (with incentive). 
Taking into account also the results from our previous 
study, we conclude that the mere availability of a bonus 
task facilitates people’s willingness for offloading, even if 
no additional financial incentive is provided, see Fig. 7.

In fact, in everyday life, it seems that such explicit 
financial incentives are rare and that people instead 
benefit more indirectly from complete offloading. Con-
sider, for example, offloading a certain task (e.g., writing 
a business email) to ChatGPT. This will save you time 
and cognitive resources to perform another (maybe more 
interesting?) task yourself. By doing so, you might benefit 
in various ways: you might be happy to avoid writing a 
boring email, you might enjoy the alternative task more, 
and you might also benefit in terms of efficiency and fin-
ish your work’s task load earlier than expected.

When analyzing to what extent our questionnaire 
scales explain additional variance on top of the two fac-
tors we manipulated in our experiments (i.e., knowledge 
about the computer partner’s capacity and bonus task 
availability), we found that the rated competence of the 
computer partner is the only significant predictor. Our 
other questionnaire scales—Desirability of Control and 
Affinity for Technological Systems—did not explain addi-
tional variance. This suggests that when controlling for 
the two before-mentioned factors, variance in partici-
pants’ offloading behavior can be additionally explained 
by participants’ explicit ratings of the computer’s com-
petence. This finding further corroborates the idea that 
the perceived competence of an artificial system plays 
an important role in the context of offloading, as not 
only our experimental manipulation (computer capacity 
known vs. unknown) leads to significant differences in 
offloading but also the rated competence of the computer 
positively correlates with offloading. These findings are 
in line with and extend earlier work which showed that 
the perceived competence of an artificial system influ-
ences the extent to which people are willing to share a 
task with it (Weis & Wiese, 2022). Note though that the 
present correlational finding should be interpreted with 
a bit of caution given that our sample size (N = 104) may 
not suffice to obtain a stable correlation (see Schönbrodt 
& Perugini, 2013).

Limitations
We note at this point that the above conclusions partially 
rest on a comparison between data from the present 
study and data from a previous study of ours (Wahn et al., 
2023). Even though such comparisons across studies are 
not standard practice, we believe that in the present case, 
this type of between-study comparison can be justified. 
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First of all, we suggest that in any case, the factor bonus 
task (with, without) must be manipulated in a between-
subject design. This is because a within-subject design 
would likely lead to order/carry-over effects and would 
considerably lengthen the experiment which, in turn, 
could negatively affect participants’ attentional perfor-
mance due to fatigue effects. We thus chose to conduct 
a between-subject study (by including data from our pre-
vious experiments) while ensuring the highest possible 
standards of comparability between groups (see p. 10). To 
this end, we made sure that participant samples did not 
differ in terms of demographics and that the experimen-
tal conditions (location, equipment, experimenter) are 
exactly the same in the present and previous study.

Another limitation of the present study is the sample 
size, which was matched to our previous study but was 
originally computed for correlations and pairwise com-
parisons, yet not for more complex analyses (i.e., LMMs 
or MLRs). A replication study with an adjusted sample 
size would consolidate the current findings.

Future directions
Future research could further investigate people’s “desire 
to stay engaged/avoid boredom” as a reason for offload-
ing by varying the engagement level of the task that peo-
ple can potentially offload. It is possible that people might 
be more willing to offload a boring task to an algorithm 
compared to an engaging task (even if the competence 
of the algorithm is unknown). Instead (or in addition to) 
the engagement factor of the task, one could also vary the 
task type in order to shed light onto people’s preconcep-
tions about the capacities of artificial systems. This could 
extend earlier work which showed that people were more 
willing to offload an arithmetic task to an algorithm com-
pared to an emotion judgment task (Wiese et al., 2022).

One further possible motivation for why participants 
in the present study chose to offload the task completely 
(rather than partially) might have been that participants 
aimed to minimize switch costs which would occur when 
changing back and forth between the MOT task on one 
trial and the mental rotation task on the next trial. While 
none of our participants explicitly mentioned this moti-
vation, it may still be worth exploring this further.

Relatedly, a future study could explore offloading in a 
dual-task design where two attentionally demanding 
tasks need to be performed at the same time (for a recent 
review see Wahn & Sinnett, 2019). Investigating this 
could be worthwhile because, in attentionally demanding 
professions (e.g., in aviation, air-traffic control, and car-
driving), workers are often faced with dual-task demands 
and offloading parts of these demands could help prevent 
costly errors. A recent study (Grinschgl et al., 2023) used 
a dual-task design with two memory tasks (i.e., a visual 

pattern copy task and an auditory N-back task). If par-
ticipants offloaded parts of the copy task, their perfor-
mance in the N-back task increased. This suggests that 
in dual-task scenarios in the domain of memory, offload-
ing cognition in one task can benefit the simultaneous 
performance in the second task. An open question is 
whether this finding translates to the domain of atten-
tion. To address this question, a future study could test 
to what extent humans are willing to offload tracking load 
in a MOT task if they are required to simultaneously per-
form an auditory localization task (Wahn & König, 2015).

Moreover, future research could tap more directly 
into the limitations of attention (Marois & Ivanoff, 2005; 
Wahn & König, 2017) by instructing participants to track 
a number of targets that goes beyond their individual 
maximum tracking load and thereby create an attentional 
overload. With this manipulation, participants might be 
willing to offload to a larger extent (compared to the pre-
sent study) as they would likely feel overwhelmed with 
the task in the Solo condition. In other words, the expe-
rienced attentional overload may create an underestima-
tion of one’s own tracking abilities, which in turn could 
lead to more offloading. Another direction for future 
research could be to introduce errors in the computer 
partner’s performance. In this case, if participants ini-
tially monitor the computer’s performance, they might 
stop offloading after witnessing the computer’s errors. 
This is predicted based on earlier research which showed 
that humans tend to lose trust in an algorithm once it 
commits an error (Dietvorst et  al., 2015). Alternatively, 
participants might not monitor the computer’s perfor-
mance at all and simply trust that it will perform accu-
rately—they would thus not even notice the computer’s 
errors. This is predicted by previous research on the so-
called automation bias, which has been defined as “the 
use of automation as a heuristic replacement for vigilant 
information seeking and processing” (Mosier & Skitka, 
1999, p. 344). Thus, a future study could test these two 
alternative predictions and determine whether errors in 
the algorithm’s performance lead to a drop in offloading 
because people lose trust in the algorithm or whether 
errors actually do not affect offloading because people’s 
automation bias prevails.

Conclusions
In sum, the present study extends earlier work on cogni-
tive offloading (Wahn et al., 2023; Weis & Wiese, 2019a, 
2019b, 2022; Wiese et al., 2022) by showing that people’s 
willingness to offload an attentionally demanding task to 
an algorithm is critically boosted both by the availability 
of a bonus task and by the knowledge about the algo-
rithm’s capacity. This finding has potential applied rele-
vance in today’s world in which, on the one hand, people 
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often perform more than one task at a time, increasing 
their attentional load and thus the risk for errors (e.g., 
Wahn & König, 2015), and, on the other hand, cognitive 
tasks formerly reserved for humans have become feasible 
for artificial systems. Hence, people could substantially 
profit from offloading one task (of several) to an artificial 
system, thereby decreasing their attentional load and thus 
the risk for errors. The present findings suggest that peo-
ple might be more inclined to offload tasks if they know 
that the system is capable of performing the assigned 
task and if they have the option to perform another task 
themselves.
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