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Framing the fallibility of Computer-Aided 
Detection aids cancer detection
Melina A. Kunar1*   and Derrick G. Watson1 

Abstract 

Computer-Aided Detection (CAD) has been proposed to help operators search for cancers in mammograms. Previ-
ous studies have found that although accurate CAD leads to an improvement in cancer detection, inaccurate CAD 
leads to an increase in both missed cancers and false alarms. This is known as the over-reliance effect. We investigated 
whether providing framing statements of CAD fallibility could keep the benefits of CAD while reducing over-reliance. 
In Experiment 1, participants were told about the benefits or costs of CAD, prior to the experiment. Experiment 2 was 
similar, except that participants were given a stronger warning and instruction set in relation to the costs of CAD. The 
results showed that although there was no effect of framing in Experiment 1, a stronger message in Experiment 2 
led to a reduction in the over-reliance effect. A similar result was found in Experiment 3 where the target had a lower 
prevalence. The results show that although the presence of CAD can result in over-reliance on the technology, these 
effects can be mitigated by framing and instruction sets in relation to CAD fallibility.

Keywords Mammogram, Artificial Intelligence, Visual search, Computer-Aided Detection (CAD), Over-reliance, 
Framing

Public significance statement
There has been substantial recent investment into Arti-
ficial Intelligence and Machine Learning Algorithms to 
develop Computer-Aided Detection (CAD) for tasks 
such as searching for cancers in mammography. How-
ever, although there is benefit to using CAD, its presence 
also leads to readers becoming over-reliant on the tech-
nology. This research shows that prior knowledge about 
the costs of CAD can reduce this over-dependence, while 
still retaining its benefits. The research is important for 
understanding how humans interact with CAD technol-
ogy, for optimal medical screening behaviour.

Introduction
Visual search is an important part of our daily life. For 
example, we may search for a car in a car park, a face in a 
crowd or a set of keys on a cluttered desk. Visual search 
tasks are also important for some critical applied tasks 
that relate to health and safety. For example, airport secu-
rity personnel search images of bags for prohibited items 
and medical health care professionals search medical 
images for indications of cancers. Missing a target (pro-
hibited items or cancers) in these latter search tasks can 
result in harmful outcomes. Therefore, it is important 
that in these tasks, people can search and find their target 
accurately and efficiently.

In breast cancer screening, visual search has been 
shown to be complex and can result in a failure to find 
a high proportion of cancerous indicators (e.g. Evans 
et al., 2013a, 2013b). To minimise these errors, different 
procedures have been implemented to try and reduce 
miss errors and optimise search. For example, in the UK 
each mammogram is viewed or ‘read’ by two readers, 
and any disagreement is then considered at arbitration. 
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The double reading procedure is effective and has been 
found to increase cancer detection and reduce the pro-
portion of missed cancers (e.g. Kunar et al., 2021; Taylor 
& Potts, 2008). However, with the increase in the num-
ber of women needed to be screened, and a decrease in 
the number of trained radiologists, this procedure may 
not be future-proof (James et  al., 2010). Instead, other 
ways to improve mammography reading need to be 
considered.

The use of Artificial Intelligence (AI) and Machine 
Learning has been proposed as one approach to improve 
medical screening. Computer-Aided Detection (CAD) 
has been recommended as a ‘virtual’ second reader where 
computer algorithms are used to highlight ‘suspicious’ 
areas in a mammogram for a human reader to investigate 
(Castellino, 2005; Lehman et  al., 2015). CAD can either 
be presented simultaneously with the mammogram or be 
presented after a reader has initially searched the display 
to act as a decision aid (e.g. Hupse et al., 2013). CAD is 
regularly used in the USA and has been adopted (or con-
sidered for adoption) in other countries too (e.g. Guer-
riero et  al., 2011; Houssami et  al., 2009; Lehman et  al., 
2015; Sato et al., 2014). Within the USA, CAD is used in 
the majority of Medicare screening populations (Lehman 
et al., 2015) and its use has increased over the past two 
decades with advancements in AI and substantial finan-
cial investments in this technology (e.g. Keen et  al., 
2018; Henriksen et  al., 2019; Elmore & Lee, 2022; Har-
vey et al., 2019). However, the benefits and costs of CAD 
have been debated with some studies declaring either lit-
tle, no or inconclusive benefit (e.g. Azavedo et al., 2012; 
Bennett et  al., 2006; Gilbert et  al., 2008; Lehman et  al., 
2015), while others have suggested positive outcomes 
of introducing CAD (e.g. Samulski et  al., 2010; Zheng 
et al., 2004). A range of methodologies have been used to 
investigate CAD including clinical observational studies, 
Randomised Clinical Trials (RCTs) and laboratory-based 
studies. Laboratory studies are a good way of investigat-
ing the effects of CAD, to complement clinical studies, 
as they allow the recruitment and participation of more 
readers than typically available for clinical observational 
studies, in a time efficient manner (RCTs often take years 
to run, at which point the CAD systems being tested may 
be obsolete).

Using laboratory-based studies, Kunar et  al. (2017) 
evaluated the effectiveness of CAD and showed that 
along with its benefits, readers showed substantial over-
reliance effects on the technology, leading to a high pro-
portion of both miss errors and false alarms when the 
CAD technology was wrong. In their study, Kunar et al. 
(2017) trained naïve readers to find cancers in a mam-
mogram search task (adapted for use with non-medical 
readers). The results showed that when the cancer was 

highlighted by the CAD cue, cancer detection was high, 
with very few missed cancers. However, when the CAD 
cue was inaccurate (either by failing to highlight the 
cancer or highlighting a non-cancerous area), readers 
missed a large proportion of cancers and showed greater 
miss errors compared to when a CAD system was never 
used (see also Drew et  al., 2020). Furthermore, partici-
pants made more false alarms (saying that a cancer was 
present when there was not one) when a CAD cue was 
incorrectly presented on a target absent trial. In a clinical 
setting, although miss errors (where a cancer goes unno-
ticed) may ultimately be the more serious type of error, 
false alarms also have their own negative consequences. 
For example, false alarms lead to unwarranted anxiety 
for the women involved (Aro, 2000), a delay in the uptake 
of future mammogram scans (Kahn & Luce, 2003), and 
increased unnecessary financial healthcare costs (as 
women are incorrectly recalled for follow-up, often 
invasive tests)—all of which add burden to already over-
stretched healthcare systems. Given that CAD accuracy 
is variable, and no CAD system is (of yet) 100% reliable, 
these over-reliance effects on CAD are of concern. Please 
note that human radiologists are also not 100% reliable 
in detecting cancers over a long period of time. How-
ever, as CAD systems are designed to help human readers 
and decrease detection errors, it is important to assess 
and minimise any extra concerns (such as over-reliance 
effects) that CAD may introduce to cancer detection.

Despite this, when CAD cues are correct, they are 
beneficial to the reader in terms of leading to a reduc-
tion in miss errors (Kunar et  al., 2017; Kunar, 2022; 
Russell & Kunar, 2012; Drew et  al., 2020). This is par-
ticularly important when we consider the prevalence of 
the targets that readers are searching for. Wolfe et  al. 
(2005) have demonstrated the existence of a Low Preva-
lence (LP) effect whereby miss errors increase dramati-
cally with a decrease in target prevalence rate (see also 
Wolfe et al., 2007; Rich et al., 2008; Kunar et al., 2010, 
2021; Russell & Kunar, 2012; Van Wert et  al., 2009; 
Mitroff & Biggs, 2014). This effect has been shown to 
be robust and immune to a large range of interventions 
that try and decrease the LP effect (Wolfe et al., 2007). 
Given that the prevalence of cancers in mammography 
screening is low (Gur et  al., 2003), it is crucial to find 
ways to help readers detect cancers when they are pre-
sent. One such way to reduce the LP Effect is with the 
use of CAD (at least when the algorithm is accurate). 
Given this benefit and the recent world-wide invest-
ment in Machine Learning and AI within health care, 
it would be prudent to investigate ways to improve 
human interaction with CAD to keep the benefits, 
while reducing any costs of user over-reliance in such 
systems.
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In one such study, Kunar (2022) found that the way 
CAD was presented to the reader affected search, so that 
if CAD was presented after observers had examined the 
initial mammogram, fewer miss errors were found com-
pared to when CAD was presented simultaneously with 
the mammogram (see also Drew et al., 2020 who looked 
at CAD presentation). This showed that the effective-
ness of CAD was malleable, and its presentation could 
be adjusted for optimal human interaction. The current 
study investigates another way that human–CAD inter-
action might be affected by examining whether framing 
of the CAD’s effectiveness can reduce over-reliance on 
this technology.

Previous research has shown that the presence of 
advanced knowledge or training prior to a task can miti-
gate cognitive biases and has been proposed as a ben-
eficial way to improve decision making in both applied 
settings and when technology is involved (Kassin et  al., 
2013; Sellier et al., 2019). Furthermore, there is a substan-
tial body of literature that shows (1) the way information 
is framed can have large impacts on human behaviour 
(e.g. Thaler & Sunstein, 2008) and (2) additional instruc-
tion, information and expectations can affect how people 
search visual displays and make medical decisions (Cox 
et  al., 2021; Madrid & Hout, 2019; Phelps et  al., 2017). 
Therefore, we investigate whether framing information 
about either the benefits or costs of CAD will keep the 
advantages, while mitigating the over-reliance effects. In 
particular, if people are told that CAD can sometimes be 
inaccurate and lead to missed cancers, will they be less 
likely to show this over-reliance bias?

Of course, it is also important to establish that fram-
ing information about the costs of CAD will not under-
mine the benefits of CAD when it is accurate. However, 
we hypothesise that this will not be the case. To be effec-
tive, CAD prompts need to be salient to alert a reader 
to a possible target—and therefore, exogenous cues are 
often used. Previous research in the visual search lit-
erature suggests exogenous cues capture attention in a 
bottom-up fashion and, as such, are not easily ignored 
(in some instances it is impossible to ignore these types 
of cues, e.g. Remington et  al., 1992; Theeuwes, 1994). 
More recently, it has been found that bottom-up sig-
nals of distracting information can be attentionally sup-
pressed by top-down control (e.g. Sawaki & Luck, 2010; 
Gaspelin et al., 2017; Wang & Theeuwes, 2018). However, 
when salient signals are not suppressed, they will elicit 
increased activation in a Priority Map, (e.g. Wolfe, 2021; 
Luck et al., 2021). By this account, CAD cues will benefit 
search if they highlight the target accurately. Conversely, 
if the CAD cue is deemed irrelevant, then attention will 
move to the next highest peak on the Priority Map and 
search will continue until the target is found or a quitting 

threshold has been reached to stop search (Wolfe, 2021). 
This process of ‘search beyond the cue’ is important to 
ensure that that attention is not ‘captured’ by the CAD 
cue for the whole search task once it is deemed irrel-
evant. This implies that any cue should be capable of 
releasing attention after the initial capture (i.e. designing 
and presenting a cue which continually drew attention to 
itself throughout the reading period would not be wise). 
We hypothesise that any CAD prompt will initially gen-
erate a large priority signal that will draw attention and 
cause its immediate area to be searched. Therefore, miss 
errors should not be affected when the CAD cue predicts 
a target. However, if people have prior knowledge that 
CAD cues are fallible, they may be more likely to search 
the display more thoroughly than if they are not told of 
its inaccuracies.

We present three experiments that examine how fram-
ing the costs or benefits of CAD affects target detection. 
In Experiment 1, people were given advanced knowledge 
that CAD can be useful for finding the target (i.e. fram-
ing the benefits of CAD) or that CAD can cause peo-
ple to miss the target if it is inaccurate (i.e. framing the 
costs of CAD). Experiment 2 was similar to Experiment 
1 but gave a stronger warning of the benefits/costs and 
explicitly instructed the reader to either use or ignore 
CAD. The results showed that whereas a mild warning 
of the costs/benefits of CAD did little to mitigate the 
over-reliance effect, a stronger warning and instruction 
set resulted in fewer false alarms and a reduction in miss 
errors for Incorrect CAD cues, whilst retaining the ben-
efit of CAD when it was correct. Experiment 3 replicated 
Experiment 2, but while Experiments 1 and 2 used a high 
target prevalence (a target was present on 50% of trials), 
Experiment 3 looked at the effect of a strong warning 
when the target had a lower prevalence rate (the target 
was present 10% of the time). Horowitz (2017) highlights 
the importance of testing CAD under LP rates, given that 
search mechanisms differ across prevalence rates.1 Again, 
to preview the results, giving people a strong warning 
and instruction set of CAD costs led to fewer false alarms 
at LP (but not a reduction in miss errors), while retain-
ing the benefit when CAD was correct. Collectively, the 
results show that despite CAD prompts having a strong 
attentional capture effect, leading to an over-reliance 
effect across experiments, framing about the costs of 
CAD reduced this over-reliance, while retaining the ben-
efits when the CAD technology was correct.

1 Please note that 10% target prevalence rate is still higher than is typically 
observed in a clinical setting; however, it is a prevalence rate that has often 
been used in laboratory studies to investigate the LP Effect (e.g. Navalpakkam 
et al., 2009; Peltier & Becker, 2016).
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Experiment 1
Method
Transparency and openness
The data can be found on the Open Science Framework 
(https:// osf. io/ m832p/). All data were compiled in Micro-
soft® Excel® for Microsoft 365 MSO (Version 2112 Build 
16.0.14729.20254) and imported into SPSS (Version 27, 
Release 27 0.1.0) and JASP (Version 0.16; JASP Team, 
2021) for statistical analysis. The experimental programs 
were written in BlitzMax (Version 1.48 Sibly, 2004). The 
study design, hypotheses and analytic plan were not pre-
registered. All manipulations, data exclusions and meas-
ures are reported.

Participants Forty participants (mean age = 24.1 years) 
took part in Experiment 1. Participant numbers were 
pre-determined prior to study commencement and 
were based on participant numbers used in previous 
research (e.g. Drew et al., 2012; Kunar et al., 2017; Wolfe 
et al., 2007). A power analysis calculated using G*Power 
(F-tests, effect size = 0.25, alpha = 0.05, see Faul et  al., 
2007) showed that the minimum number of participants 
needed to achieve a power of 0.8, for each condition was 
14. Therefore, testing 20 participants per condition should 
provide sufficient power to detect any significant effects. 
In all experiments, participants were recruited from the 
University of Warwick participant pool, had no prior 
training in reading mammograms and were paid for their 
time. Ethical approval for all studies was granted by the 
Humanities and Social Sciences Research Ethics Commit-
tee at the University of Warwick.

Stimuli and  procedure The mammogram images were 
taken from the selection of ‘normal’ mammograms (those 
not containing a cancer) of the Digital Database for 
Screening Mammography (DDSM) database (Heath et al., 
1998, 2001). All images were selected at random. Images 
were presented in the centre of the display and subtended 
approximately 11 degrees by 19 degrees at a viewing dis-
tance of 57 cm (although the individual size of each image 
varied because they were real mammograms). For target 
present trials, four cancers and four benign masses were 
selected at random from cancer cases and benign cases 
on the DDSM. In radiology, a mass can take on multiple 
different forms and requires years of training to detect. 
As the participants in these experiments were medically 
untrained, we chose to use four examples of each mass, 
throughout the experiment (i.e. in training, practice and 
experimental trials) to train participants on and act as tar-
gets. This ensured that participants knew what to search 
for and follows the methodology of other research which 
used examples of discrete and detectable stimuli as tar-
gets (e.g. Drew et al., 2012, 2020; Kunar, 2022; Kunar et al., 

2017, 2021; Rich et al., 2008; Wolfe et al., 2005, 2007 etc.). 
These masses were then transposed onto mammograms 
that previously contained no cancer using imaging editing 
software so that each image contained one mass (either 
cancerous or benign, each mass appeared equally often 
throughout the experiment). The mass could appear on 
any area of the breast tissue, chosen at random (mimick-
ing conditions in a clinical setting), provided that it was 
clearly distinguishable once fixated (see also Kunar et al., 
2017; Kunar et al., 2021; Kunar, 2022). The CAD cues con-
sisted of a red outline box that subtended 1.1 degrees by 
1.1 degrees at a viewing distance of 57 cm. All mammo-
gram images were created prior to the experiment.

In each condition, there were 200 target absent trials 
and 200 target present trials. For the target absent trials, 
150 trials (75%) were presented without any CAD cues 
(No CAD). The other 50 trials (25%) of target absent tri-
als contained a CAD cue placed on a random area of the 
mammogram (representing an incorrect CAD cue, see 
also Russell & Kunar, 2012; Kunar et al., 2017 for similar 
methodology). For target present trials, 100 trials con-
tained a benign mass and 100 trials contained a cancer. 
Within the benign mass trials, 60 trials showed a CAD 
cue that correctly highlighted the mass (Correct CAD), 
20 trials showed a mass that fell outside of the CAD cue, 
with the CAD placed on another random area within the 
breast tissue (Incorrect CAD), and 20 trials contained 
a mass but did not show any CAD cue (No CAD). The 
same proportion of Correct, Incorrect and No CAD tri-
als were used for mammograms that contained a cancer. 
CAD accuracy has been shown to vary from 57% (Soo 
et al., 2005) to 85% (Obenauer et al., 2006, see also Hen-
riksen et al., 2019 who report a CAD accuracy of between 
65 and 77%) depending on the type of cancer and suspi-
ciousness of the lesion. Therefore, we chose an accuracy 
rate of 60% for target present trials to fit within this range 
(see also methodology of Russell & Kunar, 2012; Kunar 
et  al., 2017; Kunar, 2022). Participants viewed all 400 
mammogram images presented in a random order (see 
Fig. 1 for an example image).

Before taking part in the experiment proper, partici-
pants were given a training session to familiarise them-
selves with mammogram images and the cancers and 
benign masses. In this training session, participants were 
first shown images of both the cancerous and benign 
masses on their own. The experimenter gave partici-
pants information of what to look for (e.g. the cancers 
have a more spiculated appearance than benign masses, 
to help participants we described cancer masses as hav-
ing a more textured and ‘striped’ or ‘spiky’ appearance 
than benign masses). They were then shown 24 differ-
ent mammograms, each containing a mass. The first 
12 contained a benign mass; the next 12 contained a 

https://osf.io/m832p/
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cancer. Participants were asked to point to the mass in 
each mammogram while the experimenter was in the 
same room (the experimenter would provide feedback if 
needed). Once participants completed this cancer identi-
fication task and both the participant and experimenter 
were confident that the participant could identify a mass, 
they proceeded to take a ‘test-identification’ block, where 
they were shown 24 mammograms, each containing a 
mass and asked to identify the mass as either a cancer 
or benign mass (by pressing keys c or b, respectively, 
on a standard computer keyboard). The experimenter 

remained in the room during this time to make sure the 
participant could categorise the masses correctly. If a 
participant had difficulty identifying the mass, they could 
be shown more examples and could repeat the training 
condition until both the participant and experimenter 
were confident that they were able to identify the mass. 
However, in practice, all the participants learned to iden-
tify the mass within the first session and none were asked 
to repeat it. Once this training phase was complete, par-
ticipants could then begin the full experiment. None of 
the mammograms used in the training phase or the prac-
tice were repeated in the main experiment.

There were two between-subjects experimental con-
ditions: a Frame Benefits condition and a Frame Costs 
condition. Half the participants completed the Frame 
Benefits condition; half the participants completed the 
Frame Costs condition. At the start of each condition, 
participants were shown a set of instructions asking them 
to search for a mass that could appear in the image. Par-
ticipants were then shown an instruction page outlining 
either the benefits or costs of CAD. The instructions read: 
“We will be examining how Computer-Aided Detection 
(CAD) cues help people find cancers. The CAD cues 
are red boxes that sometimes highlight where a cancer 
is.” For the Frame Benefits Condition, participants then 
saw a sentence stating: “The CAD cues have been found 
to greatly help people find a cancer when it is present”. 
For the Frame Costs Condition, participants were shown 
a sentence stating: “However, the CAD cues are likely to 
cause you to miss a cancer if it is incorrectly used”. Both 
critical sentences were highlighted to participants in their 
respective condition using bold and red ink. On a final 
instruction page, participants were asked to respond as 
accurately as possible and reminded of the message fram-
ing CAD in terms of either its benefits or costs.

Within each trial, participants were first shown a 
black screen for 500  ms. They were then presented 
with one of the mammogram images. CAD cues were 
automatically presented at the same time as the mam-
mogram. Participants were asked to respond whether 
they thought a mass was present or absent by press-
ing either the ‘m’ or the ‘z’ key, respectively, which then 
removed the display. If participants responded that a 
mass was present, they were then asked whether it was 
cancerous or benign and responded by pressing either 
‘c’ or ‘b,’ respectively. The experiment then moved onto 
the next trial. If participants responded that a mass 
was absent, the experiment moved onto the next trial. 
If no response was made within 10  s, the trial ‘timed-
out’ and the next trial started automatically. Following 
a response or ‘time-out’, a black screen was again dis-
played before the next trial. In both conditions, Reac-
tion Times (RTs) and error rates were recorded. RTs 

Cancerous Mass - Correct CAD, Incorrect CAD and No CAD 

Benign Mass - Correct CAD, Incorrect CAD and No CAD 

Mass Absent – Incorrect CAD and No CAD 

Fig. 1 Examples of mammogram displays with Correct CAD, 
Incorrect CAD and No CAD for cancerous, benign and no mass (target 
absent) conditions



Page 6 of 17Kunar and Watson  Cognitive Research: Principles and Implications            (2023) 8:30 

indicating a timeout and those less than 200  ms were 
considered outliers and removed from data analysis. If 
participants realised they had pressed the wrong but-
ton (e.g. pressed that the target was absent rather than 
present, due to a motor error), they were able to correct 
it on the following trial, by pressing the ‘Escape’ key 
during any time of the next trial (see Fleck & Mitroff, 
2007; Van Wert et  al., 2009; Kunar et  al., 2010; Kunar 
et  al., 2017; Kunar et  al., 2021; Russell & Kunar, 2012; 
Rich et  al., 2008, for similar methodologies). This did 
not affect the presentation of the next trial, but was 
recorded in the data file, and allowed participants to 
correct any motor errors. It also enabled self-corrected 
responses to be subsequently calculated. Participants 
then continued with the current trial, responding with 
an ‘m’ or ‘z’ key if the target was present or absent, 
respectively. No feedback was given after any response, 
or correction, was made. As the results of interest are 
from cognitive rather than motor response errors (i.e. 
those that can be corrected in the field), the analy-
ses were conducted using the self-corrected data (see 
also Kunar et  al., 2017, 2020; Kunar, 2022). For both 
conditions, participants completed a short practice 
block before they started the experimental block of 
trials. Like the experimental block, the practice block 
included displays that contained a mass (either a can-
cer or benign) and those that did not. This ensured that 
participants were shown examples of all types of mam-
mograms (i.e. both target present and target absent) 
prior to completing the experimental trials.

Across experiments, there are a number of statistical 
analyses that could be conducted; however, we limited 
our analyses to those addressing the question at hand. 
Where planned t-tests are reported, we also include 
Bayesian analyses, as supportive evidence (Wagenmak-
ers et  al., 2018a). We only include Bayesian analysis for 
t-tests rather than ANOVAs as the latter is still an ongo-
ing topic of research (Wagenmakers et  al., 2018b). For 
our Bayesian analyses, we adopt the recommendations of 
Jeffreys (1961) in which a  BF10 of 1–3 provides anecdo-
tal evidence for the alternative, a  BF10 of 3–10 provides 
substantial evidence for the alternative, a  BF10 of 10–30 
provides strong evidence for the alternative, a  BF10 of 
30–100 provides very strong evidence for the alternative 
and a  BF10 of greater than 100 provides decisive evidence 
for the alternative. The inverse of these numbers  (BF01) 
provides evidence in support the null hypothesis (Jarosz 
& Wiley, 2014).

Results
The outlier procedure removed 1.49% of all data. Error 
rates for all conditions are presented in Fig. 2.

Miss errors
A 2 × 3 × 2 mixed ANOVA was conducted on miss 
errors (calculated from target present trials only) with 
within-participant factors of Mass (Cancer vs. Benign) 
and CAD (Correct CAD, Incorrect CAD and No CAD) 
and between participant factor of Framing (Benefits vs. 
Costs). This revealed a significant main effect of Mass, 
F(1, 38) = 40.36, p < 0.001, ηp

2 = 0.52, in which partici-
pants missed more cancers than benign masses. There 
was a significant main effect of CAD, F(2, 76) = 18.23, 
p < 0.001, ηp

2 = 0.32, in which there were fewest misses 
in the Correct CAD and most misses in the Incorrect 
CAD conditions. There was no significant effect of 
Framing, F(1, 38) = 1.0, p = 0.32, ηp

2 = 0.03. There was 
a significant Mass × CAD interaction, F(2, 76) = 21.73, 
p < 0.001, ηp

2 = 0.36, in which the difference in miss 
errors across CAD conditions was larger when the mass 
was a cancer compared to when it was benign. None of 
the other interactions, including those with Framing as 
a factor, were significant (all Fs < 1, ps > 0.49).

Fig. 2 Proportion of miss errors and false alarms in Experiment 1. 
Trials containing a benign mass as a target are denoted with (B); 
trials containing a cancer as a target are denoted with (C). Error bars 
represent the standard error
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False alarms
A 2 × 2 mixed ANOVA on false alarms (calculated from 
target absent trials only)2 with within-participant factors 
of CAD (No CAD vs. Incorrect CAD) and between par-
ticipant factor of Framing (Benefits vs. Costs) revealed a 
significant main effect of CAD, F(1, 38) = 20.05, p < 0.001, 
ηp

2 = 0.35; there were more false alarms with Incor-
rect CAD compared to No CAD. There was no main 
effect of Framing, F(1, 38) = 0.14, p = 0.71, ηp

2 = 0.004. 
The CAD × Framing Interaction was not significant, F(1, 
38) = 0.14, p = 0.71, ηp

2 = 0.004.

Signal detection theory
Signal Detection Theory (SDT, Green & Swets, 1967; 
Macmillan & Creelman, 2005) was used to calculate how 
CAD and prior knowledge influenced d’ (a change in sen-
sitivity) and c (a change in criterion).3 Figure 3 shows the 
d’ and c values.

Sensitivity (d’)
A 2 × 3 × 2 mixed ANOVA on d’ with within-participant 
factors of Mass (Cancer vs. Benign) and CAD (Correct 
CAD, Incorrect CAD and No CAD) and between par-
ticipant factor of Framing (Benefits vs. Costs) revealed a 
significant main effect of Mass, F(1, 38) = 34.78, p < 0.001, 
ηp

2 = 0.48, in which d’ was greater for benign masses than 
cancers. There was a significant main effect of CAD, F(2, 
76) = 30.94, p < 0.001, ηp

2 = 0.45, in which d’ was greatest 
for Correct CAD, followed by No CAD and then Incor-
rect CAD. There was no significant effect of Framing, 
F(1, 38) = 0.62, p = 0.44, ηp

2 = 0.02. There was a signifi-
cant Mass × CAD interaction, F(2, 76) = 12.36, p < 0.001, 
ηp

2 = 0.25, in which d’ for cancers was lower than that for 
benign masses in the No CAD and Incorrect CAD con-
ditions but not in the Correct CAD condition. No other 
interactions were significant (all Fs < 1, ps > 0.43).

Criteria, (c)
A 2 × 3 × 2 mixed ANOVA on c with within-participant 
factors of Mass (Cancer vs. Benign) and CAD (Correct 
CAD, Incorrect CAD and No CAD) and between par-
ticipant factor of Framing (Benefits vs. Costs) revealed a 
significant main effect of Mass, F(1, 38) = 34.77, p < 0.001, 
ηp

2 = 0.48, in which participants were more willing to 
respond that a benign mass was present compared to a 
cancer. There was a significant main effect of CAD, F(2, 
76) = 52.69, p < 0.001, ηp

2 = 0.58, in which participants 
were more willing to respond that a mass was present 
with Correct CAD compared to Incorrect and No CAD 
conditions. There was no significant effect of Framing, 
F(1, 38) = 0.00, p = 0.99, ηp

2 = 0.00. There was a signifi-
cant Mass × CAD interaction, F(2, 76) = 12.36, p < 0.001, 
ηp

2 = 0.25, in which participants were more willing to 
respond to benign masses than cancers in the No CAD 
and Incorrect CAD conditions but not in the Correct 
CAD condition. No other interactions were significant 
(all Fs < 1, ps > 0.92).

Mass identification errors
The effect of CAD and Framing on mass identifica-
tion errors was also examined (Fig. 4). A 2 × 3 × 2 mixed 
ANOVA on mass identification errors with within-
participant factors of Mass (Cancer vs. Benign) and 
CAD (Correct CAD, Incorrect CAD and No CAD) and 
between participant factor of Framing (Benefits vs. Costs) 
revealed a significant main effect of Mass, F(1, 38) = 4.68, 
p = 0.037, ηp

2 = 0.11; participants made more errors in 
identifying cancers than benign masses. There was also a 
significant main effect of CAD, F(2, 76) = 10.62, p < 0.001, 
ηp

2 = 0.22; Mass Identification Errors were highest with 
Incorrect CAD and lowest with Correct CAD. There 
was no main effect of Framing, F(1, 38) = 0.12, p = 0.74, 

Fig. 3 D’ and c values in Experiment 1. Trials containing a benign 
mass as a target are denoted with (B); trials containing a cancer as a 
target are denoted with (C). Error bars represent the standard error

2 Please note there was no Mass as a factor as False Alarms are only possible 
on target absent trials.
3 False alarm or miss error rates of 0 and 1 were adjusted using the for-
mulas 1/2n and 1 − (1/2n), where n = the number of trials (Macmillan & 
Kaplan, 1985, see also Russell & Kunar, 2012; Wolfe et al., 2007; Kunar et al., 
2021, who used this procedure).
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ηp
2 = 0.003. The Mass × CAD interaction was significant, 

F(2, 76) = 4.80, p = 0.01, ηp
2 = 0.11, in which Incorrect 

CAD led to an increase in cancers being misidentified, 
but not benign masses. None of the other interactions 
were significant, (all Fs < 1.4, ps > 0.26).

Discussion
Experiment 1 examined whether framing the benefits or 
costs of CAD would mitigate their over-reliance on CAD 
technology, by reducing the miss errors and false alarms 
when CAD cues were incorrect. The results showed that 
there was no difference in miss errors or false alarms 
between participants who were told the benefits of using 
CAD and those that were told of its costs.

Replicating previous results (Kunar, 2022; Kunar et al., 
2017), in all conditions, there was an over-reliance effect 
of CAD. There were fewer miss errors when CAD was 
correct, compared to when CAD was incorrect or no 
CAD was presented. Having an Incorrect CAD cue also 
led to a greater number of false alarms. However, framing 
the costs/benefits of CAD cues did statistically nothing to 
alleviate over-reliance on this technology.

Results from the SDT analysis also showed that CAD 
affected both sensitivity (as measured by d’) and partici-
pants’ response criteria (as measured by c). Correct CAD 
cues led to both an increase in sensitivity and a shift in 
response threshold so that participants were more willing 
to respond that a target was present. The same pattern of 
results was found for both framing conditions regardless 
of whether participants were told about either the ben-
efits or costs of CAD.

Across all conditions, there was a difference in how 
participants responded to cancers versus benign masses. 
Participants made fewer miss errors, showed greater sen-
sitivity and were more willing to say a mass was present 
when the target was benign in comparison to when it was 

a cancer. This effect is similar to that found in previous 
work which also used simulated mammograms (Kunar 
et  al., 2017) and may be a result of the mass exemplars 
used. For example, the benign masses were less spicu-
lated than their cancerous counterparts, resulting in a 
smoother texture. This difference may have led them to 
be more easily segmented from the background leading 
them to greater detection of benign masses (e.g. Julesz, 
1981, see also Kunar et al., 2017).

Examining mass identification errors, cancers were 
misidentified more often than benign masses. There was 
also an effect of CAD on mass identification—partici-
pants were more likely to misidentify a mass if the CAD 
cue was Incorrect. This was particularly the case for can-
cerous masses—where participants misidentified the 
mass as being benign if a CAD cue was present but high-
lighting an area without an anomaly. In this experiment, 
not only did an Incorrect CAD cue lead to an increase in 
miss errors—it had a detrimental effect on identification 
errors so a mass falling outside a CAD cue might be more 
likely to be perceived as ‘harmless’ or benign. These data 
suggest that the over-reliance participants showed about 
CAD may also affect identification errors, alongside 
search errors (see Kunar et al., 2017 for similar evidence). 
We discuss this further in the General Discussion.

Experiment 1 showed that participant’s over-reliance 
on CAD was not changed by framing of the CAD ben-
efits or costs. Experiment 2 investigated whether people 
showed the same level of over-reliance on CAD when the 
warnings about CAD costs were made stronger, and they 
were explicitly told not to use them.

Experiment 2
Method
Participants
Forty participants (Mean age = 18.5  years) took part 
in Experiment 2. Half the participants took part in the 
Frame Benefits Condition, and half the participants took 
part in the Frame Costs condition.

Stimuli and procedure
The stimuli and procedure were the same as Experi-
ment 1, apart from the following. As there was no effect 
of mass type on knowledge, on target present trials, we 
chose to only present mammograms containing a cancer 
in Experiment 2 and the remaining experiments (rather 
than cancers and benign masses). Participants were still 
given a training phase to familiarise themselves with 
mammogram and cancer images (however, they were not 
given examples of benign images or trained to distinguish 
between a cancer and benign mass in the training phase). 
This meant that each experiment condition contained 
200 trials—100 target present and 100 target absent. For 

Fig. 4 Proportion of mass identification errors in Experiment 1. 
Trials containing a benign mass as a target are denoted with (B), 
trials containing a cancer as a target are denoted with (C). Error bars 
represent the standard error
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the target present trials, 60 contained the cancer in the 
CAD (Correct CAD), 20 contained the cancer outside 
the CAD box (Incorrect CAD) and 20 contained no CAD 
cues (No CAD). For the target absent trials, 25 contained 
a CAD cue (Incorrect CAD) and 75 contained no CAD 
(No CAD).

Similar to Experiment 1, participants took part in one 
of two conditions: a Frame Benefits condition or a Frame 
Costs condition. However, the severity of the warning in 
the message was increased. In the Frame Benefits con-
dition, participants were given the explicit instructions 
before the experiment stating that: “The CAD cues have 
been found to greatly help people find a cancer when 
it is present. They have been used to accurately predict 
where the cancer is. Please use the CAD cues to help find 
the target”. In the Frame Costs condition, participants 
were given the explicit instructions before the experi-
ment that: “It has been shown that people can incorrectly 
rely on the CAD cues and not search the mammogram 
properly. Often the CAD cues are INCORRECT. Please 
IGNORE the CAD cues and DO NOT use them”. On a 
final instruction page, participants were asked to respond 
as accurately as possible and reminded of the message 
framing CAD in terms of either its benefits or costs.

Results
The outlier procedure removed 1.09% of all data. Error 
rates for all conditions are presented in Fig. 5.

Miss errors
A 3 × 2 mixed ANOVA on miss errors with within-par-
ticipant factors of CAD (Correct CAD, Incorrect CAD 
and No CAD) and between participant factor of Framing 
(Benefits vs. Costs) revealed a significant main effect of 
CAD, F(2, 76) = 30.87, p < 0.001, ηp

2 = 0.45, in which there 
were fewest miss errors in the Correct CAD compared to 
the No CAD and Incorrect CAD conditions. There was 
no significant effect of Framing, F(1, 38) = 1.77, p = 0.19, 
ηp

2 = 0.04. However, there was a significant CAD × Fram-
ing interaction, F(2, 76) = 4.21, p = 0.018, ηp

2 = 0.10. Given 
the CAD × Framing interaction was significant, planned 
t-tests were used to break-down this interaction. For 
Incorrect CAD participants made fewer miss errors in 
the Frame Costs compared to the Frame Benefits Con-
dition, t(38) = 2.19, p = 0.04, d = 0.69, with anecdotal evi-
dence in support of the alternative,  BF10 = 1.94. There was 
no difference in miss errors for Correct CAD, t(38) = 0.34, 
p = 0.73, d = 0.11, with substantial evidence in support of 
the null,  BF10 = 0.32, or No CAD conditions, t(38) = 0.77, 
0 = 0.45, d = 0.24, with anecdotal evidence in support of 
the null,  BF10 = 0.39.

False alarms
A 2 × 2 mixed ANOVA on false alarms with within-par-
ticipant factors of CAD (No CAD vs. Incorrect CAD) 
and between participant factor of Framing (Benefits vs. 
Costs) revealed a significant main effect of CAD, F(1, 
38) = 68.06, p < 0.001, ηp

2 = 0.64; there were more false 
alarms with Incorrect CAD compared to No CAD. 
There was no main effect of Framing, F(1, 38) = 2.52, 
p = 0.12, ηp

2 = 0.06. However, the CAD × Framing 
Interaction was significant, F(1, 38) = 8.73, p = 0.005, 
ηp

2 = 0.19. Given the CAD ×  Framing interaction was 
significant, planned t-tests were used to break-down 
this interaction. For Incorrect CAD, participants made 
fewer false alarms in the Frame Costs compared to 
the Frame Benefits Condition, t(38) = 2.29, p = 0.03, 
d = 0.72, with anecdotal evidence in support of the 
alternative  BF10 = 2.29. As would be expected, there 
was no difference in false alarms across Framing con-
ditions when there was No CAD, t(38) = 0.21, p = 0.84, 
d = 0.07, with substantial evidence in support of the 
null,  BF10 = 0.31.

Signal detection theory
Figure 6 shows the d’ and c values.

Fig. 5 Proportion of miss errors and false alarms in Experiment 2. 
Error bars represent the standard error
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Sensitivity (d’)
A 3 × 2 mixed ANOVA on d’ with within-participant fac-
tors of CAD (Correct CAD, Incorrect CAD and No CAD) 
and between participant factor of Framing (Benefits vs. 
Costs) revealed a significant main effect of CAD, F(2, 
76) = 46.09, p < 0.001, ηp

2 = 0.55, in which d’ was greatest 
for Correct CAD, followed by No CAD and then Incor-
rect CAD. There was a significant effect of Framing, F(1, 
38) = 4.46, p = 0.04, ηp

2 = 0.11, in which d’ was greatest in 
the Frame Costs condition compared to the Frame Ben-
efits condition. There was also a significant CAD × Fram-
ing interaction, F(2, 76) = 8.60, p < 0.001, ηp

2 = 0.18. Given 
the CAD × Framing interaction was significant, planned 
t-tests were used to break-down this interaction. For 
Incorrect CAD, d’ was greater in the Frame Costs com-
pared to the Frame Benefits Condition, t(38) = 3.63, 
p < 0.001, d = 1.15, with very strong evidence in support 
of the alternative,  BF10 = 36.09. There was no difference 
in d’ across Framing conditions when CAD was correct, 
t(38) = 1.28, p = 0.21, d = 0.41, with anecdotal evidence 
in support of the null,  BF10 = 0.59, or when there was No 
CAD, t(38) = 0.44, p = 0.66, d = 0.14, with anecdotal evi-
dence in support of the null,  BF10 = 0.33.

Criteria, (c)
A 3 × 2 mixed ANOVA on c with within-participant 
factors of CAD (Correct CAD, Incorrect CAD and No 

CAD) and between participant factor of Framing (Ben-
efits vs. Costs) revealed a significant main effect of CAD, 
F(2, 76) = 107.87, p < 0.001, ηp

2 = 0.74, in which partici-
pants were more willing to respond that a mass was pre-
sent with Correct CAD, followed by Incorrect and then 
No CAD. There was no significant effect of Framing, F(1, 
38) = 0.41, p = 0.53, ηp

2 = 0.01. There was a significant 
CAD × Framing interaction, F(2, 76) = 7.97, p < 0.001, 
ηp

2 = 0.17. Given the CAD × Framing interaction was sig-
nificant, planned t-tests were used to break-down this 
interaction. There was no difference in c, across Fram-
ing conditions for Incorrect CAD, t(38) = 0.27, p = 0.79, 
d = 0.09, with substantial evidence in support of the null, 
 BF10 = 0.32, or when there was No CAD, t(38) = 0.58, 
p = 0.56, d = 0.18, with anecdotal evidence in support of 
the null,  BF10 = 0.35. There was a difference in c across 
Framing conditions when CAD was correct, t(38) = 2.25, 
p = 0.03, d = 0.71, with anecdotal evidence in support of 
the alternative,  BF10 = 2.17. Participants were more will-
ing to state that a cancer was present in the Frame Ben-
efits compared to the Frame Costs condition when the 
CAD cue was correct.

Discussion
Experiment 2 showed that a stronger and more explicit 
instruction set, telling participants to either use or not 
use CAD, led to a change in participants’ over-reliance on 
CAD. Participants who were explicitly warned and given 
instructions in relation to the costs of CAD made fewer 
false alarms and miss errors when the CAD cue was 
incorrect. Importantly, in this experiment, such instruc-
tion did not lead to a difference in miss errors when the 
CAD cue was correct. Thus, giving people a strong warn-
ing and instruction set regarding the fallibility of CAD 
preserved its benefits but mitigated its costs.

Examining the SDT data, we can see that the difference 
in response behaviour for Incorrect CAD cues seems to 
be driven by d’ rather than c. Framing the fallibility of 
CAD leads to an improvement in sensitivity and abil-
ity to detect the signal (i.e. cancer) from noise (i.e. areas 
not containing a cancer) when Incorrect CAD cues are 
present.

Please note that despite the improvement in sensitivity 
and reduction in errors when framing CAD’s costs, there 
was still an effect of CAD on search performance. People 
were still influenced by the presence of a CAD cue even 
when warned not to use it, as shown by the remaining 
presence of a (although somewhat attenuated) over-reli-
ance effect. It seems that the presence of a CAD cue, even 
with warning not to use it, cannot help but affect mam-
mogram reading. One potential reason for this could be 
that in these experiments, participants had a time limit of 
10 s in which to respond before the display was removed. 

Fig. 6 D’ and c values in Experiment 2. Error bars represent the 
standard error
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This is different from a clinical setting in which radiolo-
gists often spend longer searching individual mammo-
grams. If participants felt pressurised into responding 
quickly, then they may be more likely to rely on the CAD 
recommendation. To examine this possibility, we looked 
at RTs for each framing condition. However, for both 
conditions participants responded well within the time 
limit (with an average of 1735  ms and 1599  ms, and a 
standard deviation of 954 ms and 715 ms, for the Frame 
Benefit and Frame Cost conditions, respectively) and 
therefore had ample time to examine each mammogram, 
before the display timed out. Thus, the over-reliance 
effect observed in this experiment does not seem to be 
driven by participants feeling a time pressure to respond.

Experiment 2 showed that framing the costs of CAD 
led to a reduction in the over-reliance effect. Please note 
that this Experiment had a target prevalence rate of 50%. 
Previous research has shown that search performance 
can differ between conditions in which a target appears 
frequently compared with when in occurs infrequently 
(high vs. low prevalence conditions). This finding led 
Horowitz (2017) to emphasise the importance of testing 
CAD under LP conditions. Accordingly, in Experiment 3, 
we replicated Experiment 2 under conditions where the 
target has a lower prevalence.

Experiment 3
Method
Participants
Forty participants (Mean age = 20.4  years) took part in 
Experiment 3. Half the participants completed the Frame 
Benefits Condition and half the Frame Costs condition.

Stimuli and procedure
The stimuli and procedure were the same as Experiment 
2, apart from the prevalence of the target reduced from 
50 to 10% and the time-out period for each trial being 
15 s. In each condition, there were 1000 trials: 100 target 
present and 900 target absent. For the target present tri-
als, 60 contained the cancer in the CAD (Correct CAD), 
20 contained the cancer outside the CAD box (Incorrect 
CAD) and 20 contained no CAD cues (No CAD). For 
the target absent trials, 225 (25%) contained a CAD cue 
(Incorrect CAD) and 675 (75%) contained no CAD (Cor-
rect CAD). In each condition, participants were given 
the same framing instructions in relation to CAD as in 
Experiment 2 and were given breaks every 200 trials.

Results
The outlier procedure removed 2.00% of all data. Error 
rates for all conditions are presented in Fig. 7. The data 
from one participant were removed from analysis in the 
Frame Benefits condition because they pressed the ‘m’ 

key on all trials showing that they were not following task 
instructions. The remaining data from the 19 participants 
were entered into analysis (please note that this is still 
greater than the minimum number of 14 participants, 
per condition, needed for sufficient power).

Miss errors
A 3 × 2 mixed ANOVA on miss errors with within-par-
ticipant factors of CAD (Correct CAD, Incorrect CAD 
and No CAD) and between-participant factor of Fram-
ing (Benefits vs. Costs) revealed a significant main effect 
of CAD, F(2, 74) = 67.63, p < 0.001, ηp

2 = 0.65; there were 
fewer miss errors in the Correct CAD compared to the 
Incorrect and No CAD conditions. There was no signifi-
cant effect of Framing, F(1, 37) = 1.15, p = 0.29, ηp

2 = 0.03. 
The CAD × Framing interaction was not significant, F(2, 
74) = 0.71, p = 0.50, ηp

2 = 0.02. As the CAD × Framing 
interaction was not significant, we did not break this 
interaction down further.

False alarms
A 2 × 2 mixed ANOVA on false alarms with within-par-
ticipant factors of CAD (No CAD vs. Incorrect CAD) 
and a between-participant factor of Framing (Benefits 
vs. Costs) revealed a significant main effect of CAD, 
F(1, 37) = 34.18, p < 0.001, ηp

2 = 0.48, in which there 

Fig. 7 Proportion of miss errors and false alarms in Experiment 3. 
Error bars represent the standard error
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were more false alarms with Incorrect CAD compared 
to No CAD. There was a main effect of Framing, F(1, 
37) = 5.89, p = 0.02, ηp

2 = 0.14, in which there were fewer 
false alarms in the Frame Costs compared to the Frame 
Benefits condition. The CAD × Framing Interaction was 
also significant, F(1, 37) = 5.10, p = 0.03, ηp

2 = 0.12. Given 
the CAD × Framing interaction was significant, planned 
t-tests were used to break-down this interaction. For 
Incorrect CAD, participants made fewer false alarms in 
the Frame Costs compared to the Frame Benefits Condi-
tion, t(37) = 2.99, p = 0.005, d = 0.96, with substantial evi-
dence in support of the alternative,  BF10 = 8.65. As would 
be expected, there was no significant difference in false 
alarms across Framing conditions when there was No 
CAD, t(37) = 1.53, p = 0.13, d = 0.49, with anecdotal evi-
dence in support of the null,  BF10 = 0.78.

Signal detection theory
Figure 8 shows the d’ and c values.

Sensitivity (d’)
A 3 × 2 mixed ANOVA on d’ with within-participant 
factors of CAD (Correct CAD, Incorrect CAD and No 
CAD) and a between-participant factor of Framing 
(Benefits vs. Costs) revealed a significant main effect of 
CAD, F(2, 74) = 65.54, p < 0.001, ηp

2 = 0.64, in which d’ 
was greatest for Correct CAD, followed by No CAD and 
then Incorrect CAD. There was a significant effect of 
Framing, F(1, 37) = 6.98, p = 0.01, ηp

2 = 0.16, in which d’ 

was greater in the Frame Costs than the Frame Benefits 
condition. There was also a significant CAD × Framing 
interaction, F(2, 74) = 5.11, p = 0.008, ηp

2 = 0.12. Given 
the CAD × Framing interaction was significant, planned 
t-tests were used to break-down this interaction. For 
Incorrect CAD, d’ was greater in the Frame costs com-
pared to the Frame Benefits Condition, t(37) = 2.81, 
p = 0.008, d = 0.90, with substantial evidence in support 
of the alternative,  BF10 = 6.01. D’ was also greater for the 
Frame Costs than the Frame Benefits condition for Cor-
rect CAD, t(37) = 2.54, p = 0.02, d = 0.82, with substantial 
evidence in support of the alternative,  BF10 = 3.61. There 
was no difference in d’ across framing conditions when 
there was No CAD, t(37) = 0.78, p = 0.44, d = 0.25, with 
anecdotal evidence in support of the null,  BF10 = 0.40.

Criteria, (c)
A 3 × 2 mixed ANOVA on c with within-participant 
factors of CAD (Correct CAD, Incorrect CAD and No 
CAD) and between participant factor of Framing (Ben-
efits vs. Costs) revealed a significant main effect of CAD, 
F(2, 74) = 113.11, p < 0.001, ηp

2 = 0.75, in which par-
ticipants were more willing to respond that a mass was 
present with Correct CAD, followed by Incorrect and 
then No CAD. There was a significant effect of Framing, 
F(1, 37) = 5.88, p = 0.02, ηp

2 = 0.14, in which participants 
were more willing to respond that a mass was present 
in the Frame Benefits than the Frame Costs condition. 
There was no significant CAD × Framing interaction, 
F(2, 74) = 1.55, p = 0.22, ηp

2 = 0.04. As the CAD × Fram-
ing interaction was non-significant, we did not break this 
interaction down further.

Discussion
Experiment 3 determined whether framing the costs 
of CAD would reduce the over-reliance effect when the 
target had a low prevalence. The results showed that 
although miss errors were not affected across conditions, 
participants made fewer false alarms when they received 
instructions framing the fallibility of CAD. Examining 
this further, we see the effect was significant in the Incor-
rect CAD condition but not in the No CAD condition. 
Thus, with the knowledge that CAD cues can be incor-
rect, people were less likely to falsely declare that a target 
was present when CAD incorrectly indicated the pres-
ence of a cancer.

Examining the SDT data, we see that the change in 
search behaviour with framing occurred due to an over-
all change in both d’ and c. Framing of CAD fallibility 
increased both sensitivity and changed people’s response 
bias so that they were less likely to respond that a target 
was there. The results also showed that the sensitivity 
change was affected by CAD so that the ability to detect 

Fig. 8 D’ and c values in Experiment 3. Error bars represent the 
standard error
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a target from noise was greater in the Frame Costs con-
dition when CAD cues were incorrect—leading to a 
decrease in false alarms.

Please note that in Experiment 3 we did not observe 
a reduction in miss errors for Incorrect CAD condi-
tions (which was observed in Experiment 2). However, 
within medical screening, as false alarm errors are asso-
ciated with their own issues (i.e. an increase in anxiety 
for patients, follow-up invasive medical examinations, 
increased healthcare costs, etc.) it is also important to 
minimise these types of errors. Our results show that 
framing the costs of CAD is an effective way to do this.

General discussion
This study investigated the effects of CAD on the search 
for and detection of a cancerous mass in a mammogram. 
Kunar et al. (2017) suggested that CAD cues produce an 
over-reliance where people become overly dependent 
on the technology, leading to issues when the CAD cues 
are incorrect. The current work determined whether this 
over-reliance effect could be reduced depending on how 
the costs or benefits of CAD were framed or whether the 
mere presence of CAD would always lead to an over-reli-
ance effect.

Experiments 1 and 2 provided people with information 
framing either the benefits of CAD or the costs of CAD. 
It was found that a mild warning about the costs/benefits 
of CAD did little to change search behaviour (Experi-
ment 1). However, giving people a stronger warning and 
explicitly telling people not to use CAD in Experiment 2 
led to an improvement in search performance in terms 
of a reduction in miss errors and false alarms when the 
CAD cue was incorrect. Replicating the effect of this 
strong warning on conditions where the cancer had a 
lower prevalence showed that although there was no 
reduction in miss errors, there was again a reduction in 
false alarms with incorrect CAD (Experiment 3). Inter-
estingly, in all experiments there was still an over-reliance 
effect of CAD, where miss errors and false alarms were 
greater when the CAD cue was incorrect.

The results of these experiments demonstrated two 
important points. First, CAD cues cannot be easily 
ignored. Even under circumstances of explicit instruc-
tions and warnings, participants were still influenced by 
CAD. This is interesting as it shows how ‘hard-wired’ 
the visual system and decision processes are so that, 
even when people know that these cues are hazardous, 
they cannot fail but to pay attention to them. From the 
visual attention literature, we know that certain fea-
tures can capture attention automatically (see Wolfe & 
Horowitz, 2004, 2017 for a review) and that highly sali-
ent, exogenous cues capture attention in a bottom-up 
manner (e.g. Yantis & Jonides, 1984; Jonides & Yantis, 

1988). While there is some evidence to suggest that top-
down factors can mitigate bottom-up attention in some 
cases (e.g. Bacon & Egeth, 1994; Folk et al., 1992), there 
is also evidence to suggest that some bottom-up signals 
are immune to top-down control (e.g. Remington et  al., 
1992; Theeuwes, 2004). More recently, Sawaki and Luck 
(2010) have suggested a hybrid approach known as the 
signal suppression hypothesis whereby bottom-up sig-
nals from salient distractors can be actively suppressed 
by top-down processes if they are irrelevant to the task 
(see also Gaspelin et al., 2015, 2017). Furthermore, peo-
ple can learn to attentionally suppress regularities in 
search including the location (Wang & Theeuwes, 2018), 
temporal properties (Xu et al., 2021) and colours of a sali-
ent distractors (Stilwell et al., 2019). This latter research 
suggests that the role of selection history is important 
in attention (Awh et al., 2012) and that selection history 
and value (for example, reward or emotion, Kunar et al., 
2014) are thought to modulate attention and activity in 
the Priority Map (Wolfe, 2021).

In relation to our work, the CAD cues can act as both 
relevant (in correct CAD trials) and irrelevant (when the 
CAD cues are incorrect) signals. Thus, the need to sup-
press CAD priority signals would fluctuate throughout 
the mammogram reading session. On a trial-by-trial 
basis, participants had no, a priori, way to determine 
whether CAD was going to be a relevant (helpful) cue 
or an irrelevant (distracting) cue that needed to be sup-
pressed. Furthermore, in these experiments the CAD cue 
was accurate 60% of the time. It could be that readers 
learned this regularity and used this selection history to 
weight CAD cues higher on the Priority Map, leading to 
attentional capture when they were presented. One way 
to test this possibility would be to run a study in which 
the CAD cues were 100% inaccurate and so participants 
never experienced any correct cues. However, from a 
practical/applied point of view this does not seem sensi-
ble because the results would only be applicable if in the 
real-world CAD cues were ever 100% incorrect—which 
seems extremely unlikely. Nonetheless, from a theoreti-
cal point of view, this possibility might contribute to the 
apparently stubborn overreliance effect of CAD cues.

Please note that, while in these experiments we used 
a CAD cue in the form of a salient red box, in clinical 
settings the form of the CAD can vary (circles of vari-
ous colours, arrows, highlighted regions etc.). However, 
all CAD cues will be designed to be clearly visible by 
the reader and so will, by definition, have some form of 
‘attention-grabbing’ bottom-up signal. Indeed, if a CAD 
cue was not easy to find or did not draw attention, then a 
reader would need to perform two difficult search tasks, 
one to find the CAD cue and another to find a possible 
non-cued mass—rendering the cue ineffective. Therefore, 
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it would be sensible to suggest that the attentional cap-
ture exhibited in our studies is generalisable to those 
CAD systems that use exogenous CAD prompts in differ-
ent forms. It will be up to future research to investigate 
this further.

Second, although an over-reliance effect was witnessed 
across all experiments and never fully disappeared, fram-
ing of the CAD system did reduce the dependency on the 
technology. Giving people strong warnings and instruc-
tion sets about the costs of CAD led to a reduction in 
false alarms at both high prevalence and low prevalence 
(Experiments 2 and 3) and a reduction in miss errors at 
high prevalence (Experiment 2). Of course, in mammog-
raphy, prevalence rates of a cancer are much lower than 
50%; therefore, prior knowledge may not be beneficial 
to the reduction in miss errors in a clinical setting. Miss 
errors at LP are thought to occur in response to a Multi-
ple Decision Model (MDM) where (i) the search quitting 
threshold is reduced so less time is spent searching the 
displays and (ii) there is a shift in response bias, so that 
observers are less willing to respond that a target is pre-
sent (Wolfe & Van Wert, 2010). Both of these factors lead 
to large proportions of miss errors at LP that are difficult 
to alleviate (Wolfe et al., 2007). From our work, it seems 
that the effect of framing the costs of CAD is not enough 
to counter the high miss errors observed in LP search 
and proposed by the MDM.

However, framing does reduce the over-reliance effect 
in terms of lowering false alarms. False alarms are impor-
tant to reduce in a clinical setting to avoid unnecessary 
costs, worry to patients and invasive treatments of fur-
ther medical tests. If prior knowledge of CAD can alle-
viate at least some of these burdens for patients, then it 
is a worthwhile area of research. The findings are espe-
cially important given that investment into CAD, AI and 
its development has been on the rise, yet little research 
has been conducted investigating questions such as how 
to best present and regulate AI to readers and healthcare 
professionals (Reddy et al., 2020). For present purposes, 
our research has shown that with a few simple, low-cost 
instructions the reading performance of humans using 
CAD can dramatically improve.

One obvious limitation of our research is the use of 
non-medical observers as readers. Without medical 
expertise, our participants may have been more vulner-
able to over-reliance effects of CAD compared to trained 
clinicians. Despite this, there is some evidence that radi-
ologists show over-reliance effects of CAD in clinical 
settings. In a study in which eight radiologists searched 
mammograms for anomalies using CAD, Zheng et  al. 
(2004) showed that fewer abnormalities were detected 
if they appeared in non-cued areas. Hupse et  al. (2013) 
also found that the way radiologists interacted with CAD 

varied depending on how much experience they had, 
with more experienced readers being less reliant on CAD 
prompts. On this basis, it might be that framing infor-
mation about the costs/benefits of CAD would affect 
experienced radiologists and newly trained radiologists 
differently, with trainee radiologists benefitting the most 
from knowledge of CAD fallibility. Determining if this is 
the case will be a useful goal for future research.

In the current experiments, participants read mam-
mograms where a CAD system was always employed. 
Therefore, it was not possible to determine how can-
cer detection compared to performance in conditions 
in which a CAD system was never presented. Although 
it was not practical to test this condition in this paper, 
other researchers have compared error rates in condi-
tions that used a CAD system, to error rates in conditions 
that never presented CAD (Drew et al., 2020; Kunar et al., 
2017). The results suggest that the over-reliance on CAD 
led to more miss errors when a CAD system was incor-
rect in comparison to performance when a CAD system 
was never presented (see Phelps et al., 2021, for example 
of over-reliance with other medical images). Given that 
the use of CAD in medical screening is becoming more 
prevalent as technology evolves, it is vitally important 
to work out how presentation of these CAD cues affects 
decisions in clinical settings, in order to mitigate any 
effects of over-dependence.

The findings that people use CAD cues when explicitly 
told not to are also important for CAD developers. Add-
ing a salient CAD cue into a search may act against a radi-
ologist’s normal search process. Not only do CAD cues 
capture attention, but their presence may affect holistic 
or global processing, which has been found to be impor-
tant in mammography (e.g. Evans et  al., 2013a, 2013b; 
Drew et  al., 2013; Kundel et  al., 2007). Other research 
has suggested CAD would be more effective as a simpler 
system where, instead of presenting a cue on the image, 
CAD simply gives a ‘yes/no’ indication that a cancer may 
be present (e.g. Goldenberg & Peled, 2011). Using CAD 
in this manner may be more practical in an applied set-
ting if it reduces factors such as attention capture. Fur-
ther research would be needed to investigate this.

In accounting for our findings, we have emphasised 
the influence of CAD cues on the search process itself. 
For example, we have noted that the CAD cue likely 
attracts attention and influences a participant’s search 
pattern. That is, the cue might cause an area to be pri-
oritised for search with a consequent reduction in the 
extent to which other areas are searched. This might 
lead to a miss error when the cue is incorrect or facili-
tated detection when it is correct. However, it is impor-
tant to note that there are at least two main processes at 
work here—a search stage and a decision stage. First, a 
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relevant mass must be detected (the search stage); then, 
once a potential mass is found, a decision has to be made 
as to whether it is indeed a mass, and if so whether it is 
benign or cancerous. With this in mind, in Experiment 
1, cancers were more likely to be mis-identified as benign 
masses when an incorrect CAD cue was present. Here 
the CAD cues appeared to have also modulated the deci-
sion process even after a mass had been found. Although 
this question was not the focus of our work, it is another 
important consideration in determining how CAD 
affects cancer detection. Please note we have found simi-
lar results in some experiments (e.g. Kunar et al., 2017), 
but not in all experiments from our laboratory. Therefore, 
it will be up to future experiments to examine how and 
when CAD affects the decision stage as well as consider-
ing whether a mass is missed or not.

Of final note, the work in the paper has implications 
for how companies designing CAD algorithms should 
market their product. It is probable that most CAD mar-
keting campaigns will focus on the benefits of the tech-
nology (i.e. very few companies will be likely to highlight 
the inaccurate parts of their algorithms). This could 
be dangerous to readers in breast-screening practices, 
who are investing in this technology and are under the 
assumption that the addition of CAD will only be ben-
eficial. Instead, we propose that healthcare profession-
als should be made explicitly aware of the costs of CAD 
and be given training to highlight the instances that CAD 
can be incorrect. On a positive note, giving people warn-
ings about CAD does little to affect miss errors when 
the CAD cue is correct. CAD algorithms are trained and 
programmed so that they are likely to be accurate on the 
majority of trials (although actual accuracy varies across 
manufacturers). Therefore, it is good to know that giving 
people warnings about the downsides of CAD still main-
tains the benefits of CAD by reducing miss errors when 
the CAD cue is correct, but importantly reduces people’s 
over-reliance on the technology in instances when CAD 
is fallible.

Conclusions
There has been increased investment into AI and 
CAD as a decision aid in mammography. However, lit-
tle research has investigated the optimal way to pre-
sent this technology to human readers. It is imperative 
that alongside the increased financial investment in AI 
in medical screening, it is also important to investi-
gate other optimal ways to present this technology to 
humans for successful interaction. The above research 
shows that giving non-expert observers knowledge of 
CAD performance benefits mammogram reading by 
mitigating the costs of becoming over-dependent on 
the technology, while still retaining the benefits when 

the technology detects a cancer. This is a start in under-
standing how humans interact with automated deci-
sion guidance systems; however, these effects also need 
to be replicated with clinician observers. Elmore and 
Lee (2022) suggest that the interaction between human 
reader and CAD is complex and is most likely prone 
to bias. Furthermore, Masud et  al. (2019) have found 
that there is a lack of research investigating how to best 
implement CAD in a clinical setting with knowledge 
gaps in the literature and concerns about radiologists’ 
confidence level in the technology (see also Jungmann 
et  al., 2021). To understand these interactions and to 
move forward in the field, we need to better evaluate 
how humans interact with CAD in clinical settings and 
also start a more rigorous dialogue between those that 
develop CAD with those healthcare professionals that 
will ultimately end up using it.

Abbreviations
LP  Low prevalence
CAD  Computer-Aided Detection
ANOVA  Analysis of variance
RTs  Reaction times
UK  United Kingdom
USA  United States of America
MDM  Multiple decision model

Acknowledgements
The author would like to thank Olugbemi Moronfolu for assistance with data 
collection.

Author contributions
MK was the project lead responsible for designing and programming the 
experiments, overseeing data collection, analysis of all data and writing up 
the results into manuscript form. DW was responsible for programming the 
experiment and writing up the results into manuscript form. All authors read 
and approved the final manuscript.

Funding
This work was supported by Global Research Priority small grant from The 
University of Warwick. The funds were used in relation to participant payment 
and data collection.

Availability of data and materials
The datasets used and/or analysed during the current study are available from 
the corresponding author on reasonable request. The datasets generated 
and/or analysed during the current study are available in the Open Science 
Framework repository, https:// osf. io/ m832p/.

Declarations

Ethics approval and consent to participate
Full ethical approval for this study was granted by the Department of Psychol-
ogy Ethics Committee and the Humanities & Social Sciences Research Ethics 
Committee (Ethical Application Reference: 01/18-19) of the University of 
Warwick. All participants provided written informed consent.

Consent for publication
Not applicable.

Competing interests
The authors declare that they have no competing interests.

https://osf.io/m832p/


Page 16 of 17Kunar and Watson  Cognitive Research: Principles and Implications            (2023) 8:30 

Received: 14 December 2022   Accepted: 29 April 2023

References
Aro, A. R. (2000). False-positive findings in mammography screening induces 

short-term distress: Breast cancer-specific concern prevails longer. Euro-
pean Journal of Cancer, 36, 1089–1097.

Awh, E., Belopolsky, A., & Theeuwes, J. (2012). Top-down versus bottom-up 
attentional control: A failed theoretical dichotomy. Trends in Cognitive 
Sciences, 16(8), 437–443.

Azavedo, E., Zackrisson, S., Mejàre, I., & Heibert Arnlind, M. (2012). Is single read-
ing with computer-aided detection (CAD) as good as double reading in 
mammography screening? A systematic review. BMC Medical Imaging, 12, 
22. https:// doi. org/ 10. 1186/ 1471- 2342- 12- 22

Bacon, W. F., & Egeth, H. E. (1994). Overriding stimulus-driven attentional 
capture. Perception & Psychophysics, 55, 485–496. https:// doi. org/ 10. 3758/ 
BF032 05306

Bennett, R. L., Blanks, R. G., & Moss, S. M. (2006). Does the accuracy of single 
reading with CAD (computer-aided detection) compare with that of 
double reading? A review of the literature. Clinical Radiology, 61(12), 
1023–1028.

Castellino, R. A. (2005). Computer aided detection (CAD): An overview. Cancer 
Imaging, 5(1), 17–19.

Cox, P. H., Kravitz, D. J., & Mitroff, S. R. (2021). Great expectations: Minor differ-
ences in initial instructions have a major impact on visual search in the 
absence of feedback. Cognitive Research, 6, 19. https:// doi. org/ 10. 1186/ 
s41235- 021- 00286-1

Drew, T., Cunningham, C., & Wolfe, J. M. (2012). When and why might a 
Computer Aided Detection (CAD) system interfere with visual search? An 
eye-tracking study. Academic Radiology, 19, 1260–1267.

Drew, T., Evans, K., Võ, M. L. H., Jacobson, F. L., & Wolfe, J. M. (2013). Informatics 
in radiology: what can you see in a single glance and how might this 
guide visual search in medical images? Radiographics, 33(1), 263–274.

Drew, T., Guthrie, J., & Reback, I. (2020). Worse in real life: An eye-tracking 
examination of the cost of CAD at low prevalence. Journal of Experimental 
Psychology: Applied, 26(4), 659–670.

Elmore, J. G., & Lee, C. I. (2022). Artificial intelligence in medical imaging-
learning from past mistakes in mammography. JAMA Health Forum, 3(2), 
e215207. https:// doi. org/ 10. 1001/ jamah ealth forum. 2021. 5207

Evans, K. K., Birdwell, R. L., & Wolfe, J. M. (2013a). If you don’t find it often, you 
often don’t find it: Why some cancers are missed in breast cancer screen-
ing. PLoS ONE, 8(5), e64366.

Evans, K. K., Georgian-Smith, D., Tambouret, R., Birdwell, R. L., & Wolfe, J. M. 
(2013b). The gist of the abnormal: Above-chance medical decision mak-
ing in the blink of an eye. Psychonomic Bulletin & Review, 20, 1170–1175. 
https:// doi. org/ 10. 3758/ s13423- 013- 0459-3

Faul, F., Erdfelder, E., Lang, A.-G., & Buchner, A. (2007). G*Power 3: A flexible sta-
tistical power analysis program for the social, behavioral, and biomedical 
sciences. Behavior Research Methods, 39, 175–191.

Fleck, M. S., & Mitroff, S. R. (2007). Rare targets are rarely missed in correctable 
search. Psychological Science, 18(11), 943–947.

Folk, C. L., Remington, R. W., & Johnston, J. C. (1992). Involuntary covert orient-
ing is contingent on attentional control settings. Journal of Experimental 
Psychology: Human Perception and Performance, 18, 1030–1044.

Gaspelin, N., Leonard, C. J., & Luck, S. J. (2015). Direct evidence for active sup-
pression of salient-but-irrelevant sensory inputs. Psychological Science, 
26(11), 1740–1750.

Gaspelin, N., Leonard, C. J., & Luck, S. J. (2017). Suppression of overt attentional 
capture by salient-but-irrelevant color singletons. Attention, Perception, & 
Psychophysics, 79, 45–62.

Gilbert, F. J., Astley, S. M., Gillan, M. G., Agbaje, O. F., Wallis, M. G., James, J., Bog-
gis, C. R., & Duffy, S. W. (2008). the CADET II Group: Single reading with 
computer-aided detection for screening mammography. New England 
Journal of Medicine, 359, 1675–1684.

Goldenberg, R., & Peled, N. (2011). Computer-aided simple triage. International 
Journal of Computer Assisted Radiology and Surgery, 6(5), 705–711. https:// 
doi. org/ 10. 1007/ s11548- 011- 0552-x

Green, D. M., & Swets, J. A. (1967). Signal detection theory and psychophysics. 
New York: Wiley.

Guerriero, C., Gillan, M. G. C., Cairns, J., Wallis, M. G., & Gilbert, F. J. (2011). Is com-
puter aided detection (CAD) cost effective in screening mammography? 
A model based on the CADET II study. BMC Health Services Research, 11, 
11. https:// doi. org/ 10. 1186/ 1472- 6963- 11- 11

Gur, D., Rockette, H. E., Armfield, D. R., Blachar, A., Bogan, J. K., Brancatelli, G., 
Britton, C. A., Brown, M. L., Davis, P. L., Ferris, J. V., & Fuhrman, C. R. (2003). 
Prevalence effect in a laboratory environment. Radiology, 228, 10–14.

Harvey, H., Karpati, E., Khara, G., Korkinof, D., Ng, A., Austin, C., Rijken, T., & Kec-
skemethy, P. (2019). The role of deep learning in breast screening. Current 
Breast Cancer Reports, 11, 17–22.

Heath, M., Bowyer, K., Kopans, D., Kegelmeyer, W. P., Moore, R., Chang, K., & 
MunishKumaran, S. (1998) Digital mammography. In Proceedings of the 
fourth international workshop on digital mammography (pp. 457–460). 
Kluwer Academic Publishers.

Heath, M., Bowyer, K., Kopans, D., Moore, R., & Kegelmeyer, W. P. (2001). In M. J. 
Yaffe (Ed.) Proceedings of the fifth international workshop on digital mam-
mography (pp. 212–218). Medical Physics Publishing.

Henriksen, E. L., Carlsen, J. F., Vejborg, I. M., Nielsen, M. B., & Lauridsen, C. A. 
(2019). The efficacy of using computer-aided detection (CAD) for detec-
tion of breast cancer in mammography screening: A systematic review. 
Acta Radiologica, 60(1), 13–18. https:// doi. org/ 10. 1177/ 02841 85118 
770917

Horowitz, T. S. (2017). Prevalence in visual search: From the clinic to the lab and 
back again. Japanese Psychological Research, 59(2), 65–108. https:// doi. 
org/ 10. 1111/ jpr. 12153

Houssami, N., Given-Wilson, R., & Ciatto, S. (2009). Early detection of breast 
cancer: Overview of the evidence on computer-aided detection in mam-
mography screening. Journal of Medical Imaging and Radiation Oncology, 
53(2), 171–176. https:// doi. org/ 10. 1111/j. 1754- 9485. 2009. 02062.x

Hupse, R., Samulski, M., Lobbes, M. B., Mann, R. M., Mus, R., den Heeten, G. 
J., Beijerinck, D., Pijnappel, R. M., Boetes, C., & Karssemeijer, N. (2013). 
Computer-aided detection of masses at mammography: Interactive deci-
sion support versus prompts. Radiology, 266, 123–129.

James, J. J., Gilbert, F. J., Wallis, M. G., Gillan, M. G., Astley, S. M., Boggis, C. R., 
Agbaje, O. F., Brentnall, A. R., & Duffy, S. W. (2010). Mammographic features 
of breast cancers at single reading with computer-aided detection and at 
double reading in a large multicenter prospective trial of computer-aided 
detection: CADET II. Radiology, 256(2), 379–386.

Jarosz, A. F., & Wiley, J. (2014). What are the odds? A practical guide to comput-
ing and reporting Bayes factors. The Journal of Problem Solving, 7, 2–9. 
https:// doi. org/ 10. 7771/ 1932- 6246. 1167

JASP Team. (2021). JASP (Version 0.16) [Computer software].
Jeffreys, H. (1961). Theory of probability (3rd ed.). Oxford University Press.
Jonides, J., & Yantis, S. (1988). Uniqueness of abrupt visual onset in capturing 

attention. Perception & Psychophysics, 43(4), 346–354. https:// doi. org/ 10. 
3758/ BF032 08805

Julesz, B. (1981). A theory of preattentive texture discrimination based on first 
order statistics of textons. Biology and Cybernetics, 41, 131–138.

Jungmann, F., Jorg, T., Hahn, F., Dos Santos, D. P., Jungmann, S. M., Düber, 
C., Mildenberger, P., & Kloeckner, R. (2021). Attitudes toward artificial 
intelligence among radiologists, IT specialists, and industry. Academic 
Radiology, 28(6), 834–840.

Kahn, B. E., & Luce, M. F. (2003). Understanding high-stakes consumer deci-
sions: Mammography adherence following false-alarm test results. 
Marketing Science, 22(3), 393–410.

Kassin, S., Dror, I., & Kukucka, J. (2013). The forensic confirmation bias: Problems, 
perspectives, and proposed solutions. Journal of Applied Research in 
Memory and Cognition, 2, 42–52. https:// doi. org/ 10. 1016/j. jarmac. 2013. 
01. 001

Keen, J. D., Keen, J. M., & Keen, J. E. (2018). Utilization of computer-aided detec-
tion for digital screening mammography in the United States, 2008 to 
2016. Journal of the American College of Radiology, 15(1), 44–48.

Kunar, M. A. (2022). The optimal use of computer aided detection to find low 
prevalence cancers. Cognitive Research: Principles and Implications. https:// 
doi. org/ 10. 1186/ s41235- 022- 00361-1

Kunar, M. A., Rich, A. N., & Wolfe, J. M. (2010). Spatial and temporal separation 
fails to counteract the effects of low prevalence in visual search. Visual 
Cognition, 18, 881–897.

Kunar, M. A., Watson, D. G., Cole, L., & Cox, A. (2014). Negative emotional stimuli 
reduce contextual cueing but not response times in inefficient search. 
The Quarterly Journal of Experimental Psychology, 67, 377–393.

https://doi.org/10.1186/1471-2342-12-22
https://doi.org/10.3758/BF03205306
https://doi.org/10.3758/BF03205306
https://doi.org/10.1186/s41235-021-00286-1
https://doi.org/10.1186/s41235-021-00286-1
https://doi.org/10.1001/jamahealthforum.2021.5207
https://doi.org/10.3758/s13423-013-0459-3
https://doi.org/10.1007/s11548-011-0552-x
https://doi.org/10.1007/s11548-011-0552-x
https://doi.org/10.1186/1472-6963-11-11
https://doi.org/10.1177/0284185118770917
https://doi.org/10.1177/0284185118770917
https://doi.org/10.1111/jpr.12153
https://doi.org/10.1111/jpr.12153
https://doi.org/10.1111/j.1754-9485.2009.02062.x
https://doi.org/10.7771/1932-6246.1167
https://doi.org/10.3758/BF03208805
https://doi.org/10.3758/BF03208805
https://doi.org/10.1016/j.jarmac.2013.01.001
https://doi.org/10.1016/j.jarmac.2013.01.001
https://doi.org/10.1186/s41235-022-00361-1
https://doi.org/10.1186/s41235-022-00361-1


Page 17 of 17Kunar and Watson  Cognitive Research: Principles and Implications            (2023) 8:30  

Kunar, M. A., Watson, D. G., & Taylor-Phillips, S. (2021). Double reading reduces 
miss errors in low prevalence search. Journal of Experimental Psychology: 
Applied, 27(1), 84–101.

Kunar, M. A., Watson, D. G., Taylor-Phillips, S., & Wolska, J. (2017). Low prevalence 
search for cancers in mammograms: Evidence using laboratory experi-
ments and computer aided detection. Journal of Experimental Psychology: 
Applied, 23, 369–385.

Kundel, H. L., Nodine, C. F., Conant, E. F., & Weinstein, S. P. (2007). Holistic 
component of image perception in mammogram interpretation: Gaze-
tracking study. Radiology, 242, 396–402.

Lehman, C. D., Wellman, R. D., Buist, D. S. M., Kerlikowske, K., Tosteson, A. N. A., 
& Miglioretti, D. L. (2015). Diagnostic accuracy of digital screening mam-
mography with and without computer-aided detection. JAMA Internal 
Medicine, 175(11), 1828–1837. https:// doi. org/ 10. 1001/ jamai ntern med. 
2015. 5231

Luck, S. J., Gaspelin, N., Folk, C. L., Remington, R. W., & Theeuwes, J. (2021). Pro-
gress toward resolving the attentional capture debate. Visual Cognition, 
29(1), 1–21.

Macmillan, N. A., & Creelman, C. D. (2005). Detection theory: A user’s guide, 2nd 
Edn, Cambridge University Press.

Macmillan, N. A., & Kaplan, H. L. (1985). Detection theory analysis of group 
data: estimating sensitivity from average hit and false-alarm rates. Psycho-
logical Bulletin, 98, 185–199.

Madrid, J., & Hout, M. C. (2019). Examining the effects of passive and active 
strategies on behavior during hybrid visual memory search: Evidence 
from eye tracking. Cognitive Research, 4, 39. https:// doi. org/ 10. 1186/ 
s41235- 019- 0191-2

Masud, R., Al-Rei, M., & Lokker, C. (2019). Computer-aided detection for breast 
cancer screening in clinical settings: Scoping review. JMIR Medical Infor-
matics, 7(3), e12660.

Mitroff, S. R., & Biggs, A. T. (2014). The ultra-rare-item effect: Visual search for 
exceedingly rare items is highly susceptible to error. Psychological Science, 
25(1), 284–289. https:// doi. org/ 10. 1177/ 09567 97613 504221

Navalpakkam, V., Koch, C., & Perona, P. (2009). Homo economicus in visual 
search. Journal of Vision, 9(1), 16–31.

Obenauer, S., Sohns, C., Werner, C., & Grabbe, E. (2006). Impact of breast density 
on computer-aided detection in full-field digital mammography. Journal 
of digital imaging, 19, 258–263.

Peltier, C., & Becker, M. W. (2016). Decision processes in visual search as a 
function of target prevalence. Journal of Experimental Psychology: Human 
Perception and Performance, 42, 1466–1476.

Phelps, E. E., Wellings, R., Griffiths, F., Hutchinson, C., & Kunar, M. (2017). Do 
medical images aid understanding and recall of medical information? An 
experimental study comparing the experience of viewing no image, a 
2D medical image and a 3D medical image alongside a diagnosis. Patient 
Education and Counseling, 100(6), 1120–1127.

Phelps, E. E., Wellings, R., Kunar, M., Hutchinson, C., & Griffiths, F. (2021). A 
qualitative study exploring the experience of viewing three-dimensional 
medical images during an orthopaedic outpatient consultation from the 
perspective of patients, health care professionals, and lay representatives. 
Journal of Evaluation in Clinical Practice, 27(2), 333–343.

Reddy, S., Allan, S., Coghlan, S., & Cooper, P. (2020). A governance model for the 
application of AI in health care. Journal of the American Medical Informat-
ics Association, 27(3), 491–497. https:// doi. org/ 10. 1093/ jamia/ ocz192

Remington, R. W., Johnston, J. C., & Yantis, S. (1992). Involuntary attentional 
capture by abrupt onsets. Perception & Psychophysics, 51, 279–290. https:// 
doi. org/ 10. 3758/ BF032 12254

Rich, A. N., Kunar, M. A., Van Wert, M. J., Hidalgo-Sotelo, B., Horowitz, T. S., & 
Wolfe, J. M. (2008). Why do we miss rare targets? Exploring the bounda-
ries of the low prevalence effect. Journal of Vision, 8(15), 1–17.

Russell, N., & Kunar, M. A. (2012). Color and spatial cueing in low prevalence 
visual search. The Quarterly Journal of Experimental Psychology, 65, 
1327–1344.

Samulski, M., Hupse, R., Boetes, C., Mus, R., Heeten, G., & Karssemeijer, N. (2010). 
Using computer-aided detection in mammography as a decision sup-
port. European Radiology, 20, 2323–2330.

Sato, M., Kawai, M., Nishino, Y., Shibuya, D., Ohuchi, N., & Ishibashi, T. (2014). 
Cost-effectiveness analysis for breast cancer screening: Double reading 
versus single + CAD reading. Breast Cancer (Tokyo, Japan), 21(5), 532–541. 
https:// doi. org/ 10. 1007/ s12282- 012- 0423-5

Sawaki, R., & Luck, S. J. (2010). Capture versus suppression of attention by sali-
ent singletons: Electrophysiological evidence for an automatic attend-to-
me signal. Attention, Perception & Psychophysics, 72(6), 1455–1470. https:// 
doi. org/ 10. 3758/ APP. 72.6. 1455

Sellier, A. L., Scopelliti, I., & Morewedge, C. K. (2019). Debiasing training 
improves decision making in the field. Psychological Science, 30(9), 
1371–1379. https:// doi. org/ 10. 1177/ 09567 97619 861429

Sibly. (2004). BlitzMax (Version 1.48) [Computer software].
Soo, M. S., Rosen, E. L., Xia, J. Q., Ghate, S., & Baker, J. A. (2005). Computer-aided 

detection of amorphous calcifications. American Journal of Roentgenol-
ogy, 184(3), 887–892.

Stilwell, B. T., Bahle, B., & Vecera, S. P. (2019). Feature-based statistical regulari-
ties of distractors modulate attentional capture. Journal of Experimental 
Psychology: Human Perception and Performance, 45(3), 419.

Taylor, P., & Potts, H. W. (2008). Computer aids and human second reading as 
interventions in screening mammography: Two systematic reviews to 
compare effects on cancer detection and recall rate. European Journal of 
Cancer, 44(6), 798–807.

Thaler, R. H., & Sunstein, C. R. (2008). Nudge: Improving decisions about health, 
wealth, and happiness. Yale University Press.

Theeuwes, J. (1994). Stimulus-driven capture and attentional set: Selective 
search for color and visual abrupt onsets. Journal of Experimental Psychol-
ogy: Human Perception and Performance, 20(4), 799–806. https:// doi. org/ 
10. 1037/ 0096- 1523. 20.4. 799.

Theeuwes, J. (2004). Top-down search strategies cannot override attentional 
capture. Psychonomic Bulletin & Review, 11, 65–70.

Van Wert, M. J., Horowitz, T. S., & Wolfe, J. M. (2009). Even in correctable search, 
some types of rare targets are frequently missed. Attention, Perception & 
Psychophysics, 71(3), 541–553.

Wagenmakers, E. J., Love, J., Marsman, M., Jamil, T., Ly, A., Verhagen, J., Selker, 
R., Gronau, Q. F., Dropmann, D., Boutin, B., & Meerhoff, F. (2018b). Bayesian 
inference for psychology. Part II: Example applications with JASP. Psycho-
nomic Bulletin & Review, 25, 58–76.

Wagenmakers, E.-J., Marsman, M., Jamil, T., Ly, A., Verhagen, A. J., Love, J., Selker, 
R., Gronau, Q. F., Šmíra, M., Epskamp, S., Matzke, D., Rouder, J. N., & Morey, 
R. D. (2018a). Bayesian inference for psychology. Part I: Theoretical advan-
tages and practical ramifications. Psychonomic Bulletin & Review, 25, 35–57.

Wang, B., & Theeuwes, J. (2018). Statistical regularities modulate attentional 
capture. Journal of Experimental Psychology: Human Perception and Perfor-
mance, 44(1), 13–17. https:// doi. org/ 10. 1037/ xhp00 00472

Wolfe, J. M. (2021). Guided search 6.0: An updated model of visual search. 
Psychonomic Bulletin and Review, 28, 1060–1092. https:// doi. org/ 10. 3758/ 
s13423- 020- 01859-9

Wolfe, J., & Horowitz, T. (2004). What attributes guide the deployment of 
visual attention and how do they do it? Nature reviews. Neuroscience, 5, 
495–501. https:// doi. org/ 10. 1038/ nrn14 11

Wolfe, J., & Horowitz, T. (2017). Five factors that guide attention in visual 
search. Nature Human Behaviour, 1, 0058. https:// doi. org/ 10. 1038/ 
s41562- 017- 0058

Wolfe, J. M., Horowitz, T. S., & Kenner, N. M. (2005). Rare items often missed in 
visual search. Nature, 435, 439–440.

Wolfe, J. M., Horowitz, T. S., Ven Wert, M. J., Kenner, N. M., Place, S. S., & Kibbi, 
N. (2007). Low target prevalence is a stubborn source of errors in visual 
search tasks. Journal of Experimental Psychology, 136(4), 623–638.

Wolfe, J. M., & VanWert, M. J. (2010). Varying target prevalence reveals two, dis-
sociable decision criteria in visual search. Current Biology, 20, 121–124.

Xu, Z., Los, S. A., & Theeuwes, J. (2021). Attentional suppression in time and 
space. Journal of Experimental Psychology: Human Perception and Perfor-
mance, 47(8), 1056.

Yantis, S., & Jonides, J. (1984). Abrupt visual onsets and selective attention: 
Evidence from visual search. Journal of Experimental Psychology: Human 
Perception & Performance, 10, 601–621.

Zheng, B., Swensson, R. G., Golla, S., Hakim, C. M., Shah, R., Wallace, L., & Gur, 
D. (2004). Detection and classification performance levels of mam-
mographic masses under different computer-aided detection cueing 
environments. Academic Radiology, 11, 398–406.

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in pub-
lished maps and institutional affiliations.

https://doi.org/10.1001/jamainternmed.2015.5231
https://doi.org/10.1001/jamainternmed.2015.5231
https://doi.org/10.1186/s41235-019-0191-2
https://doi.org/10.1186/s41235-019-0191-2
https://doi.org/10.1177/0956797613504221
https://doi.org/10.1093/jamia/ocz192
https://doi.org/10.3758/BF03212254
https://doi.org/10.3758/BF03212254
https://doi.org/10.1007/s12282-012-0423-5
https://doi.org/10.3758/APP.72.6.1455
https://doi.org/10.3758/APP.72.6.1455
https://doi.org/10.1177/0956797619861429
https://doi.org/10.1037/0096-1523.20.4.799
https://doi.org/10.1037/0096-1523.20.4.799
https://doi.org/10.1037/xhp0000472
https://doi.org/10.3758/s13423-020-01859-9
https://doi.org/10.3758/s13423-020-01859-9
https://doi.org/10.1038/nrn1411
https://doi.org/10.1038/s41562-017-0058
https://doi.org/10.1038/s41562-017-0058

	Framing the fallibility of Computer-Aided Detection aids cancer detection
	Abstract 
	Public significance statement
	Introduction
	Experiment 1
	Method
	Transparency and openness
	Participants 
	Stimuli and procedure 


	Results
	Miss errors
	False alarms
	Signal detection theory
	Sensitivity (d’)
	Criteria, (c)
	Mass identification errors

	Discussion

	Experiment 2
	Method
	Participants
	Stimuli and procedure

	Results
	Miss errors
	False alarms
	Signal detection theory
	Sensitivity (d’)
	Criteria, (c)

	Discussion

	Experiment 3
	Method
	Participants
	Stimuli and procedure

	Results
	Miss errors
	False alarms
	Signal detection theory
	Sensitivity (d’)
	Criteria, (c)

	Discussion

	General discussion
	Conclusions
	Acknowledgements
	References


