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More of what? Dissociating effects 
of conceptual and numeric mappings 
on interpreting colormap data visualizations
Alexis Soto1,3, Melissa A. Schoenlein2,3 and Karen B. Schloss2,3*   

Abstract 

In visual communication, people glean insights about patterns of data by observing visual representations of datasets. 
Colormap data visualizations (“colormaps”) show patterns in datasets by mapping variations in color to variations in 
magnitude. When people interpret colormaps, they have expectations about how colors map to magnitude, and they 
are better at interpreting visualizations that align with those expectations. For example, they infer that darker colors 
map to larger quantities (dark-is-more bias) and colors that are higher on vertically oriented legends map to larger 
quantities (high-is-more bias). In previous studies, the notion of quantity was straightforward because more of the 
concept represented (conceptual magnitude) corresponded to larger numeric values (numeric magnitude). However, 
conceptual and numeric magnitude can conflict, such as using rank order to quantify health—smaller numbers cor-
respond to greater health. Under conflicts, are inferred mappings formed based on the numeric level, the conceptual 
level, or a combination of both? We addressed this question across five experiments, spanning data domains: alien 
animals, antibiotic discovery, and public health. Across experiments, the high-is-more bias operated at the conceptual 
level: colormaps were easier to interpret when larger conceptual magnitude was represented higher on the legend, 
regardless of numeric magnitude. The dark-is-more bias tended to operate at the conceptual level, but numeric 
magnitude could interfere, or even dominate, if conceptual magnitude was less salient. These results elucidate factors 
influencing meanings inferred from visual features and emphasize the need to consider data meaning, not just num-
bers, when designing visualizations aimed to facilitate visual communication.

Keywords Information visualization, Color cognition, Visual reasoning

Significance
Visual communication is fundamental to sharing of 
information across sectors, spanning academia, politics, 
business, and general public discourse. People use vari-
ous kinds of information visualizations to communicate 

about data, but colormap data visualizations (“color-
maps”) are especially useful for showing how patterns of 
data unfold over space. In colormaps, gradations of color 
correspond to gradations of quantity over space. Com-
mon examples include maps of weather patterns across 
a city, election outcomes across a country, and disease 
prevalence across the globe. When people interpret 
colormaps, they have expectations about how colors will 
map to quantities, and it is harder to interpret colormaps 
that violate those expectations. Several biases contribute 
to inferences about the meanings of colors in colormaps. 
For example, the dark-is-more bias leads to the inference 
that darker colors map to larger quantities, and the high-
is-more bias leads to the inference that colors represented 
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higher on a vertically oriented legend map to larger quan-
tities. Here, we investigated cases in which these biases 
make opposing predictions, depending on the degree to 
which they operate at the level of conceptual magnitude 
represented in the colormap (e.g., healthiness), or the 
level of numeric magnitude used to measure that concept 
(e.g., rank order). We found conceptual magnitude con-
sistently dominated for the high-is-more bias and tended 
to dominate for the dark-is-more bias unless the concept 
was less salient. Thus, efforts to create visualizations for 
effective communication cannot merely rely on software 
defaults for mapping numbers to colors; it is necessary to 
consider the meaning of the data.

Introduction
When people communicate about data, they leverage 
perceptual representations to help make sense of patterns 
in datasets. Such perceptual representations include data 
visualizations, such as diagrams, charts, and maps (see 
Franconeri et  al., 2021 for a review), data sonifications 
(audition) (Dingler et al., 2008; Mynatt, 1994), tactiliza-
tions (touch) (Jones, 2011), and even olfactations (smell) 
(Batch et  al., 2020; Patnaik et  al., 2018). In all of these 
cases, designers encode aspects of data (e.g., quantities or 
categories) using perceptual features (e.g., color, position, 
size, frequency, texture, or odor). Observers are then 
faced with the task of determining what those perceptual 
features mean in the context of the particular perceptual 
representation.

Colormap data visualizations are one common type 
of perceptual representation, which are used to display 
a wide variety of data types, such as weather patterns 
across different geographical regions, correlations in neu-
ral activity across different brain regions, and the spread 
of disease across the globe. In colormap data visualiza-
tions, variations of color are used to represent variations 
in magnitude within a dataset. When observers inter-
pret colormaps, they have expectations about how colors 
should map to magnitude (Cuff, 1973; McGranaghan, 
1989; Schloss et  al., 2019; Schoenlein et al., 2023; Sibrel 
et  al., 2020), known as their inferred mappings. Inter-
preting colormaps, and information visualizations more 
broadly, is easier when visualization design matches peo-
ple’s inferred mappings (Hegarty, 2011; Lin et  al., 2013; 
Mukherjee et  al., 2022; Norman, 2013; Schloss et  al., 
2018, 2019, 2021; Schoenlein et  al., 2023; Sibrel et  al., 
2020; Tversky, 2011). Thus, understanding the nature 
of people’s inferred mappings is fundamental to under-
standing how to design data representations that support 
effective communication.

Multiple factors influence inferred mappings for color-
map data visualizations, including relational and direct 
associations. Relational associations are correspondences 

between relational properties of visual features (e.g., 
darkness, opacity, and spatial height) and relational 
properties of concepts (e.g., more or less of a concept). 
For example, the dark-is-more bias leads people to infer 
that darker colors map to larger quantities (Cuff, 1973; 
McGranaghan, 1989; Schloss et  al., 2019; Schoenlein 
et  al., 2023; Sibrel et  al., 2020). And, the high-is-more 
bias leads people to infer that colors represented higher 
in a vertically oriented legend map to larger quantities 
(Schloss et al., 2019; Sibrel et al., 2020).1 This bias is con-
sistent with the general notion that positions higher in a 
picture plane correspond to larger quantities (Hegarty, 
2011; Tversky, 2011; Tversky et al., 1991). This phenom-
enon extends to gestures, as TV broadcasters tend to 
raise their hands vertically when they reference higher 
quantities (Winter et  al., 2013). Other known relational 
associations for colormaps include the opaque-is-more 
bias (Schloss et  al., 2019) and the hotspot-is-more bias 
(Schott, 2010; Sibrel et al., 2020). Direct associations are 
the degree to which a given concept is associated with a 
particular color (e.g., sunshine is strongly associated with 
light yellows but not with dark grays, whereas shade is 
strongly associated with dark grays but not light yellows). 
Direct associations can lead observers to infer that colors 
more associated with the concept (e.g., more sunshine, 
more shade) map to larger quantities, especially if those 
associations are particularly strong (Schoenlein, et  al., 
2023).

When multiple factors are activated, they combine 
to produce people’s inferred mappings for a particu-
lar visualization (Schloss et  al., 2019; Schoenlein et  al., 
2023; Sibrel et  al., 2020). Sometimes these factors work 
together, but sometimes they conflict and can cancel 
each other out. For example, when colormaps have a hot-
spot (concentric regions that form a sort of bull’s eye) and 
that hotspot is dark, the dark-is-more bias and hotspot-
is-more bias work together, leading people to infer that 
darker regions map to more. But, when the hotspot is 
light, these two biases conflict. Depending on the sali-
ence of the hotspot, the dark-is-more bias can dominate, 
the two biases can cancel out, or the hotspot-is-more bias 
can dominate (Sibrel et al., 2020). Schoenlein et al. (2023) 
laid the groundwork for a method that can predict peo-
ple’s inferred mappings from a weighted sum over multi-
ple, sometimes competing factors.

However, when evaluating mappings between visual 
features and magnitude in colormap visualizations, there 
are two types of magnitude to consider, and previously 

1 We use the term “high-is-more bias” in reference to a phenomenon identi-
fied in prior work on colormaps but not referred to by name (Schloss et al., 
2019; Sibrel et al., 2020).
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it was unknown which type(s) of magnitude influence 
inferred mappings. The first type is conceptual magni-
tude, which is the amount of the construct represented 
in the visualization. The second type is numeric magni-
tude, which is the quantitative value measured when 
operationalizing the construct. This distinction is shown 
in Fig. 1, using data from the World Health Organization 
(Ortiz-Ospina & Beltekian, 2018; Ortiz-Ospina & Roser, 
2017; Simoes & Hidalgo, 2011). In Fig. 1A, the construct 
is health coverage, which is operationalized with a health 
index. Here, conceptual and numeric magnitude are con-
gruent because greater health coverage corresponds to 
larger health index values. In Fig. 1B (left), the construct 
is economic complexity, which is operationalized using a 
complexity ranking. Here, conceptual and numeric mag-
nitudes are incongruent because more complexity corre-
sponds to smaller numbers in the rank order.

In previous studies on inferred mappings for color-
maps, conceptual and numeric magnitude were congru-
ent (or the concept was too vague to determine). When 
they were congruent, it was implied that “more” of the 
concept corresponded to “more” of the numeric magni-
tude. For example, in Cuff (1973), colormaps represented 
temperature, such that increased temperature corre-
sponded to larger degrees. In Schloss et  al., (2019) and 
Sibrel et  al., (2020), colormaps represented alien animal 
sightings on a fictitious planet, such that increased sight-
ings corresponded to larger counts of animals (Schloss 
et  al., 2019). In McGranaghan (1989), colormaps repre-
sented unspecified data, so congruency was too vague to 
determine.

Yet, as shown in Fig.  1B, cases arise in the real world 
in which conceptual and numeric magnitude conflict. 
In Fig.  1B (left), darker colors map to larger conceptual 
magnitude (greater economic complexity) and smaller 
numeric magnitude (rank position), whereas in Fig.  1B 
(right), darker colors map to smaller conceptual mag-
nitude and larger numeric magnitude. Under such con-
flicts, are inferred mappings influenced by the conceptual 
level, the numeric level, or a combination of both lev-
els? To address this question, we studied the dark-is-
more bias and high-is-more bias under conditions when 
the conceptual and numeric level were congruent or 
incongruent.

Study overview
All experiments in this study followed the experimen-
tal paradigm established in Schloss et  al. (2019). Par-
ticipants were presented with colormaps along with a 
legend (Fig.  2A, left). The legend specified the encoded 
mapping (i.e., the correspondence between visual fea-
tures and magnitude in the colormap). The lightness 
encoded mapping varied such that larger magnitude in 
the data corresponded to darker colors (dark-more; D+) 
or lighter colors (light-more; L+). The height encoded 
mapping also varied such that colors that were higher 
on a vertically oriented legend map to larger quantities 
(high-more; Hi+) or colors that were lower on the leg-
end mapped to larger quantities (Lo+). Participants were 
asked to look at the colormap and legend and to indi-
cate which side of the map had more (or less) of a target 
concept. We assessed response times (RT) to correctly 
interpret the legend. It is established that observers are 

Fig. 1 Example colormaps representing A congruent and B incongruent domain concepts. A Colormap of the Universal Health Coverage Index 
featuring a dark-more encoding (darker colors encode larger index values, which correspond to more coverage). Figure from Ortiz-Ospina and 
Roser (2017). B Two colormaps representing country ranks based on the Economic Complexity Index. In B, left (original figure), darker colors encode 
for more complexity (lower ranks, which are smaller numbers). In B, right, the color scale has been inverted, such that darker colors encode for less 
complexity (higher ranks, which are larger numbers). Figures adapted from Ortiz-Ospina and Beltekian (2018); Simoes and Hidalgo (2011)
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faster at interpreting colormaps when the encoded map-
ping more closely matches their inferred mappings, so we 
can learn about inferred mappings by determining which 
kinds of encoded mappings enable faster RTs (Schloss 
et al., 2019; Sibrel et al., 2020).

In previous studies using this paradigm, the legend was 
labeled to indicate which endpoint represented “greater” 
and which endpoint represented “fewer” (conceptual 
magnitude) but there were no numbers on the legend 
(numeric magnitude) (Schloss et  al., 2019; Sibrel et  al., 
2020). Here, we included numbers on the legend so we 
could vary the congruency of the conceptual and numeric 
magnitude. We will first describe our general approach 
in terms of the conditions in Experiment 1, and then 
describe how Experiments 2–5 adapted this procedure.

In Experiment 1, participants were presented with 
colormaps depicting fictitious data about the amount of 
time alien animals took to notice a scientist observing 

them in different regions of a planet (adapted from 
Schloss et  al., 2019; Sibrel et  al., 2020). All participants 
were told that time was measured in terms of seconds, 
and all participants saw legends that were labeled from 
1 sec. to 9 sec. Congruency varied between subjects. For 
the congruent group, the instructions described time 
in terms of duration, and the legends were labeled with 
1 sec. as “shorter” and 9 sec. as “longer” (Fig. 2A). Thus, 
greater duration corresponded to larger numeric val-
ues. The target concept was “longer,” such that partici-
pants were asked to look at the map and decide whether 
the time it took the animals to notice they were being 
observed was longer on the left or right side of the obser-
vation site. The encoded mapping at the conceptual level 
always matched the encoded mapping at the numeric 
level (e.g., both D+ or both L+ for lightness encoded 
mapping and both Hi+ or both Lo+ for height encoded 
mapping).

Concept:
Number:

D+
D+

L+
L+

D+
D+

L+
L+

Concept:
Number:

Hi+
Hi+

Hi+
Hi+

Lo+
Lo+

Lo+
Lo+

9 sec

7

5

3

1 sec

Longer

Shorter

9

1

Longer

Shorter

9

1

Longer

Shorter

1

9

Shorter

Longer

1

9

Shorter

Longer

Example Trial
A. Congruent Condition: duration (longer/shorter)

Left Side Right Side

Lightness 

Height

Encoded Mappings

Concept:
Number:

D+
L+

L+
D+

D+
L+

L+
D+

Concept:
Number:

Hi+
Lo+

Hi+
Lo+

Lo+
Hi+

Lo+
Hi+

1

9

Faster

Slower

1

9

Faster

Slower

9

1

Slower

Faster

9

1

Slower

Faster

B. Incongruent Condition: speed (faster/slower)

Lightness 

Height

Encoded Mappings

Encoded Mapping Conditions in Experiments 1-4*
*In Experiment 3, concept labels were omitted from legends. In Experiment 4, units were hours instead of seconds.

1 sec

3

5

7

9 sec

Faster

Slower

Example Trial

Left Side Right Side

Fig. 2 Encoded mapping conditions in Experiments 1–4 for the A congruent and B incongruent conditions. The example trials (left) correspond 
directly to Experiments 1 and 2. In Experiment 3 there were no concept labels on the legend, only numbers. In Experiment 4, the numeric units 
were hours rather than seconds. Within each condition, participants saw legends with four different encoded mappings, as shown in the legends 
on the right. With respect to the conceptual level, the legend conditions included 2 lightness encoded mappings (dark-more; D+ or light-more; 
L+) × 2 height encoded mappings (high-more; Hi+ or low-more; Lo+). Encoded mappings at the numeric level match the conceptual level in the 
congruent conditions and are opposite of the conceptual level in the incongruent conditions
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For the incongruent group, the instructions described 
time in terms of speed, and the legends were labeled with 
1 sec. as “faster” and 9 sec. as “slower.” Thus, more speed 
corresponded to smaller numeric values of time. The 
target concept was “faster,” such that participants were 
asked to look at the map and decide whether the time 
it took the animals to notice they were being observed 
was faster on the left or right side of the observation site. 
The encoded mapping at the conceptual level was always 
mismatched with the encoded mapping at the numeric 
level (e.g., one was D+ and the other was L+ for light-
ness encoded mapping and one was Hi+ and the other 
was Lo+ for height encoded mapping). We acknowledge 
that speed entails time relative to distance and we only 
indicate speed in terms of time, but we chose this condi-
tion because response time is often described in terms of 
speed (faster/slower) in psychological studies.

Figure 3 shows potential patterns of results depending 
on whether the dark-is-more bias operates at the con-
ceptual level (left), numeric level (middle), or an equal 
combination of both (right). For the congruent condi-
tion (conceptual and numeric levels both have dark-more 
(D+) encoding or light-more (L+) encoding), both lev-
els can work together.2 Thus, we expect RTs in the con-
gruent condition will be faster for dark-more encoding 
than light-more encoding (extending Schloss et al., 2019; 
Sibrel et  al., 2020). For the incongruent condition, the 
pattern of results will depend on the relative strength of 
the conceptual and numeric levels. If the conceptual level 
dominates inferred mappings, RTs will be faster when the 

conceptual level is encoded as dark-more, even though 
the numeric level is encoded as light-more. If the numeric 
level dominates, RTs will be faster when the numeric level 
is coded as dark-more, even though the conceptual level 
is encoded as light-more. If both levels play a role, then 
they may cancel out as shown in Fig. 3 (right), such that 
RTs will be similar for both conditions. Figure 3 is shown 
with respect to the dark-is-more bias, but the same pat-
terns apply to the high-is-more bias if dark-more (D+) 
is replaced with high-more (Hi+) and light-more (L+) is 
replaced with low-more (Lo+).

Experiments 2–5 were variations of Experiment 1 to 
test the generalizability of the results (Table 1). In Experi-
ment 2, the displays were the same as Experiment 1, but 
the instructions were different. Instead of being asked 
about the more endpoint of the conceptual dimension 
(“longer” for duration, “faster” for speed), participants 
were asked about the less endpoint (“shorter” for dura-
tion, “slower” for speed). In Experiment 3, the instruc-
tions were the same as Experiment 1, but the conceptual 
magnitude was made less salient by omitting concep-
tual magnitude labels from the legend and only showing 
numeric magnitude. In Experiment 4, the data domain 
was changed from alien animals to antibiotic discovery. 
Participants were told that the colormaps represented 
data about the amount of time it took microbes to elimi-
nate pathogens from a Petri dish. This scenario is based 
on real research in the Tiny Earth Project, which aims to 
discover new antibiotics to address the decline in effective 
antibiotics (Hurley et al., 2021). The numeric magnitude 

Fig. 3 Potential patterns of results for the congruent and incongruent conditions depending on whether the conceptual level dominates inferred 
mappings (left), the numeric level dominates (middle) or the conceptual and numeric levels equally play a role (right). The y-axis represents mean 
response time (RT) in seconds. The labels along the x-axis correspond to lightness encoded mapping and indicate whether the encoded mapping 
was dark-more (D+) or light-more (L+) at the conceptual or numeric level (see Fig. 2 for examples of legends with these different encoded 
mappings). These predictions also apply to height encoded mapping if D+ were replaced with high-more (Hi+) and L+ were replaced with 
low-more (Lo+)

2 When the conceptual and numeric levels are congruent, the same pattern of 
responses would arise regardless of whether the conceptual level dominates, 
the numeric level dominates, or both play a role.
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unit was changed from seconds to hours, but otherwise 
the experiment displays were the same as Experiment 1. 
Finally, in Experiment 5, the data domain was changed to 
public health. Participants were told that the colormaps 
represented health data in different counties, similar to 
the County Health Rankings report, an annual report 
of the physical and mental well-being of communities 
throughout states in the US ("County Health Rankings 
& Roadmaps, 2022"). The target concept was healthiness 
for both the congruent and incongruent conditions, but 
in the congruent condition, healthiness was quantified as 
an index (larger numbers indicated healthier), and in the 
incongruent condition, healthiness was quantified as a 
rank order (smaller numbers indicated healthier).

While creating the stimuli, we tried to avoid factors 
that would influence participant responses, beyond those 
we aimed to test. We used fictitious data in abstract sce-
narios to avoid cases in which participants have domain 
knowledge that could influence their responses. We 
tested domains in which participants were unlikely to 
have strong direct associations that would override the 
dark-is-more bias (alien animals, antibiotics, public 
health). We created colormaps that do not have strong 
perceptual evidence for opacity variation (see Schloss 
et  al., 2019) and they were presented on a light back-
ground, so we focused on the dark-is-more bias and 
high-is-more bias and did not consider the potential 
effects of the opaque-is-more bias. The colormaps also 
did not have spatial cues in the data, such as hotspots 
often found in weather and neuroimaging data, so we did 
not consider potential effects of the hotspot-is-more bias 
(Sibrel et al., 2020).

The stimuli, data, and analysis code for all experiments 
can be found at https:// osf. io/ kpqjh.

Experiment 1
Experiment 1 assessed the degree to which inferred map-
pings operated at the conceptual or numeric level for 
colormaps representing sightings by alien animals. In the 
congruent condition, participants were told that the data 
represented duration, and participants judged whether 
the time was longer on the left/right side of the map. In 
the incongruent condition, participants were told that 
the data represented speed, and they judged whether the 
time was faster on the left/right side of the map.

Methods
Participants
We aimed for 60 participants (30 per group), based on 
the sample sizes in Schloss et al. (2019) and Sibrel et al. 
(2020). We collected data in batches (n = 85 total) until 
reaching at least 30 participants per group after excluding 
participants for atypical color vision (n = 8) and for accu-
racy less than 90% (n = 16; exclusion criteria set following 
Schloss et al. (2019) to ensure there were sufficient accu-
rate trials to assess effects on response time). Color vision 
was assessed by asking participants: “Do you have diffi-
culty seeing colors or noticing differences between colors 
compared to the average person?” and “Do you consider 
yourself to be colorblind?” The final sample was 61 par-
ticipants (32 women, 29 men, mean age = 18.46; age and 
gender reported through open-response text fields in all 
experiments). All participants in this and all subsequent 
experiments participated online for extra credit in their 
Introductory Psychology course at the University of Wis-
consin–Madison. Each experiment tested a different set 
of participants, all of whom were from an Introductory 
Psychology course within a single academic year. All gave 
informed consent, and the University of Wisconsin-Mad-
ison IRB approved the protocol.

Table 1 Overview of Experiments 1–5

Exp Data domain Legend Congruency Construct Unit Target concept Target 
magnitude

1 Alien animals Concepts, # Congruent
Incongruent

Duration
Speed

Sec
Sec

“Longer”
“Faster”

More
More

2 Alien animals Concepts, # Congruent
Incongruent

Duration
Speed

Sec
Sec

“Shorter”
“Slower”

Less
Less

3 Alien animals # only Congruent
Incongruent

Duration
Speed

Sec
Sec

“Longer”
“Faster”

More
More

4 Antibiotics Concepts, # Congruent
Incongruent

Duration
Speed

Hr
Hr

“Longer”
“Faster”

More
More

5 Public health Concepts, # Congruent
Incongruent

Healthiness
Healthiness

Index
Rank

“Healthier”
“Healthier”

More
More

https://osf.io/kpqjh
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Design and displays
As shown in Fig. 2A and B (left), the display for each trial 
contained a colormap visualization and a legend (stimuli 
adapted from Schloss et al., 2019). The colormap visuali-
zation (referred to as “colormap” for short) was an 8 × 8 
grid (4.8 cm × 4.8 cm) placed in the center of the screen. 
These dimensions pertain to a 7 in. × 11.25 in. moni-
tor (2560 × 1600 resolution) but can vary depending on 
the monitor size of individual participants. Each cell in 
the grid represented fictitious data about the amount of 
time it took for alien animals to notice they were being 
observed by a scientist. To help participants categorize 
the data coming from the left and right sides of the color-
map, the left four columns were labeled “left side” and 
the right four columns were labeled “right side.”

The legend included a color scale (3.5 cm tall ×  0.5 cm 
wide) displayed 1  cm to the right of the colormap (also 
known as a color ramp as in Smart et al. (2019)). To the 
right of the color scale were numeric time labels: “1 sec.,” 
“3,” “5,” “7,” and “9  sec.” For the congruent group, the 
concept label “longer” (more of the concept) was next 
to “9  sec.” and “shorter” (less of the concept) was next 
to “1 sec.” (Fig. 2A). For the incongruent group, the con-
cept label “faster” (more of the concept) was next to the 
numeric label “1 sec.,” and “slower” (less of the concept) 
was next to “9  sec.” (Fig.  2B). The colormap and legend 
were positioned on a white rectangle (13  cm × 8  cm) 
centered on a medium gray background (RGB = [128, 
128, 128]). The colormaps were generated using two 
possible color scales (Fig.  4): Hot (from MATLAB) and 
ColorBrewer Blue (“Blue” for short) (Harrower & Brewer, 
2003).

Each colormap was constructed using a different 
underlying dataset to help ensure that the results were 

not due to particular spatial patterns of squares within 
any one colormap. The datasets were created by sampling 
eight points along an arctangent curve with added noise 
sampled from a normal distribution (see Schloss et  al., 
2019 for details). This approach resulted in colormaps 
in which one side was biased to be light and the other 
side was biased to be dark. Within each color scale par-
ticipants judged 40 colormaps (treated as repetitions), 20 
colormaps with the darker side on the left and 20 with 
the darker side on the right. Thus, there were 80 unique 
colormap stimuli: 2 color scales (Hot, Blue) × 2 darker 
sides (left/right) × 20 underlying datasets.

Participants saw each of these 80 colormap condi-
tions four times, corresponding to four different legend 
conditions: 2 lightness encodings at the conceptual level 
(dark-more, light-more) × 2 height encoded mappings at 
the conceptual level (high-more, low-more) (Fig.  2). In 
the congruent condition, the numeric encoded mapping 
matched the conceptual encoded mapping (Fig. 2A), and 
in the incongruent condition, the numeric encoded map-
ping was opposite of the conceptual encoded mapping 
(Fig.  2B). This design also ensured that the orientation 
of the color scale in the legend was balanced over trials, 
such that the darker end was higher on half of the trials 
and lower on the other half.

In total, each participant completed 320 experimental 
trials, including these 4 legend conditions [2 lightness 
encoded mappings (D+, L+) × 2 height encoded map-
pings (Hi+, Lo+)] presented with each of the 80 color-
map stimuli. Congruency varied between subjects, with 
random assignment to the congruent group (n = 30) or 
the incongruent group (n = 31).

Procedure
All participants were instructed that they would see 
colormaps that represent data collected by a scientist on 
a distant planet, Sparl. They were told that the data were 
about alien animals from different regions of observa-
tion sites and how much time the animals took to notice 
the scientist. In the congruent group, participants were 
told that in some observation sites, the time it took was 
LONGER on the left side of the site, and in other sites, 
the time was LONGER on the right side. Their task 
was to look at the colormap and legend, and indicate if 
the time it took the animals to notice they were being 
observed was LONGER on the left or right side of the 
observation site. In the incongruent group, the word 
“LONGER” was replaced with the word “FASTER”, but 
otherwise the instructions were the same. At the bottom 
of the screen, four example colormaps were displayed so 
participants could see the types of stimuli they would be 
asked to judge. The full set of instructions can be found 
in the Additional file 1.

Left

Darker Side of Colormap

Right

Blue 

Hot

Color 
scale

Fig. 4 Two color scales, ColorBrewer Blue, “Blue” for short, and Hot 
from MATLAB, and example colormap stimuli constructed from the 
Blue and Hot color scales (left/right balancing which side is darker)
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After reading the instructions, participants completed 
20 practice trials, randomly sampled from all possible 
trials. They then began the 320 experiment trials. Each 
trial started with a 500-ms blank gray screen with a black 
fixation cross in the center. Next, the experimental dis-
play appeared and remained on the screen until the par-
ticipant responded (pressing the left/ right arrow key). If 
they responded correctly, the next trial appeared after a 
500-ms delay. If they responded incorrectly, black text 
that said “WRONG” appeared 2  cm to the right of the 
legend for 500 ms, followed by a blank 500-ms screen, 
and then the next trial began. Participants were notified 
when they completed 25%, 50%, and 75% of the trials, 
and were told their accuracy after every 20 trials. At the 
end of the experiment, participants were presented two 
color vision questions as described above, followed by a 
debriefing message to inform them of the purpose of the 
experiment.

Results and discussion
To prepare the response time (RT) data for analysis, we 
excluded incorrect trials, and then pruned trials for each 
participant if RTs were + /–2 standard deviations from 
their mean over all trials. Next, for each participant, we 
calculated the mean RT over the remaining trials within 
each of the four legend conditions for each color scale 
(also averaging over the left/right balance of which side of 
the colormaps was darker).

We analyzed the full dataset using a mixed-design 
ANOVA: 2 congruency groups (congruent vs. incongru-
ent, between-subjects) × 2 lightness encoded mappings 
(dark-more concept vs. light-more concept; within-sub-
jects) × 2 height encoded mappings (high-more concept 
vs. low-more concept; within-subjects) ×  2 color scales 
(hot vs. blue, within-subjects). Note: for analysis pur-
poses we coded encoded mappings in reference to the 
concept, rather than the numeric magnitude, but this was 
an arbitrary decision. In the Additional file  1: Table  S1 
shows the full output of the analysis and Additional file 1: 
Figure S1 shows the data plotted according to lightness 
encoded mapping and height encoded mapping for each 
color scale.3 Here, we examine the effects of congruency 
on the dark-is-more bias and high-is-more bias sepa-
rately because there was no 3-way interaction between 
congruency, lightness encoded mapping, and height 
encoded mapping, (F(1,59) = 1.58, p = 0.214, η2p = 0.026).

Dark‑is‑more bias
Figure  5A (left) shows mean RTs plotted for trials with 
dark-more concept encoding and light-more concept 
encoding, separated by whether participants were in the 
congruent or incongruent group. These data are averaged 
over height encoded mapping and color scale. The pat-
tern of results is similar to the pattern if the conceptual 
level dominated inferred mappings (Fig. 3, left).

Consistent with a dark-is-more bias operating at the 
conceptual level, a main effect of lightness encoded map-
ping indicated quicker RTs for dark-more concept encod-
ing than light-more concept encoding (F(1,59) = 29.45, 
p < 0.001, η2p  = 0.333). However, lightness encoded 
mapping interacted with congruency (F(1,59) = 4.43, 
p = 0.040, η2p = 0.070). As shown in Fig.  5A (left), the 
degree to which RTs were quicker for dark-more than 
light-more concept encoding was greater for the congru-
ent group than the incongruent group. Given this inter-
action, we conducted paired-samples t tests to compare 
the effects of encoded mapping separately within each 
group. RTs were quicker for dark-more concept encod-
ing in both the congruent group (t(29) = − 5.22, p < 0.001, 
dz = 0.953) and incongruent group (t(30) = − 2.40, 
p = 0.023, dz = 0.430). Taken together, these results sug-
gest that the dark-is-more bias operates primarily at the 
conceptual level, but the numeric level does play a role. 
Conflict from the numeric level reduces the effect of the 
conceptual level, but the dark-is-more bias at the concep-
tual level still dominated inferred mappings.

High‑is‑more bias
Figure 5A (right) shows mean RTs plotted for trials with 
high-more concept encoding and low-more concept 
encoding, separated by whether participants were in the 
congruent group or incongruent group. These data are 
averaged over lightness encoding and color scale. Con-
sistent with a high-is-more bias operating at the con-
ceptual level, a main effect of height encoded mapping 
indicated quicker RTs for high-more concept encod-
ing than low-more concept encoding (F(1,59) = 65.06, 
p < 0.001, η2p = 0.524). This effect did not interact with 
congruency (F < 1), which suggests there was no interfer-
ence from when the numerical level conflicted (i.e., larger 
conceptual magnitude and lower numeric magnitude 
were positioned higher on the legend). Paired-samples 
t tests indicated that RTs were quicker for high-more 
encoding than low-more encoding for both the congru-
ent group (t(29) = − 5.64, p < 0.001, dz = 1.029) and the 
incongruent group (t(30) = − 5.78, p < 0.001, dz = 1.037).

In summary, the results of Experiment 1 suggest that 
both the dark-is-more and high-is-more biases are domi-
nated by the conceptual level. Under conflicts between 
conceptual and numeric levels, the numeric level plays a 

3 None of the additional effects reported in the Additional file  1  were sig-
nificant except for a 3-way interaction between lightness encoded mapping, 
height encoded mapping, and color scale (F(1,59) = 9.61, p = .003, η2p  = .140). 
As seen in Additional file 1: Figure S1, this interaction appears to be due to a 
larger effect of lightness encoded mapping for the blue color scale than the hot 
color scale within the high-more height encoded mapping condition, but less 
so within the low-more encoded mapping condition.
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role for the dark-is-more bias, but not enough to elimi-
nate or override the bias at the conceptual level. No such 
interference occurred for the high-is-more bias. These 
results suggest that when assigning perceptual features to 
quantities in colormap data visualizations, it is important 
to consider what the data mean, and not just numeric 
values, to facilitate interpretation.

Experiment 2
Experiment 2 assessed whether the results of Experiment 
1 were robust to the framing of the task. Instead of asking 
participants about the “more” endpoint of the conceptual 
dimension— “longer” in the duration (congruent) group, 
“faster” in the speed (incongruent) group, we modi-
fied the instructions to ask about the “less” endpoint of 
the conceptual dimension— “shorter” in the duration 

Fig. 5 Mean response times (RTs) in A Experiment 1, B Experiment 2, and C Experiment 3. In the column labeled “Dark-is-More Bias,” mean RTs are 
shown separately for dark-more (D+, black bars) and light-more (L+, white bars) lightness encoded mappings at the conceptual and numeric levels, 
averaged over height encoded mapping and color scale. In the column labeled “High-is-More Bias,” mean RTs are shown for high-more (Hi+, black 
bars) and low-more (Lo+, white bars) height encoded mappings at the conceptual and numeric levels, averaged over lightness encoded mapping 
and color scale. Within each plot, the bars are labeled according to congruency (congruent/incongruent) along with the corresponding target 
concept for that group in each experiment (“longer”/ “faster” in Experiments 1 and 3,” “shorter”/ “slower” in Experiment 2. Error bars represent the 
standard error of the means (SEMs) calculated using the Cousineau (2005) adjustment to account for subject-level differences in RT
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(congruent) group, “slower” in the speed (incongruent) 
group. Otherwise, Experiment 2 was the same as Experi-
ment 1.

Methods
Participants
We collected data from 92 new participants to reach a 
target sample of 60 participants, after excluding partici-
pants for atypical color vision (n = 7) and < 90% accuracy 
(n = 25). The final sample included 40 women and 20 
men (mean age = 18.82), who were randomly assigned to 
the congruent group (n = 30) or the incongruent group 
(n = 30).

Design, displays, and procedure
The methods were the same as Experiment 1, except 
for a modification to the instructions. In the congruent 
group, the word “LONGER” was replaced with the word 
“SHORTER” (e.g., was the time it took the animals to 
notice they were being observed by a scientist SHORTER 
on the left or right side of the observation site?). In the 
incongruent group the word “FASTER” was replaced 
with the word “SLOWER” (e.g., was the time it took the 
animals to notice they were being observed by a scien-
tist SLOWER on the left or right side of the observation 
site?). The full instructions can be found in the Additional 
file 1.

Results and discussion
We prepared the data for analysis and used the same 
mixed-design ANOVA as in Experiment 1. We report 
on the main results below and in Fig. 5B, plotted in the 
same manner as in Experiment 1. In the Additional file 1: 
Table S1 shows the full output of the analysis and Figure 
S2 shows the data plotted according to lightness encoded 
mapping and height encoded mapping for each color 
scale. None of the effects beyond those reported below 
were statistically significant.

Dark‑is‑more bias
Similar to Experiment 1, a main effect of lightness 
encoding indicated that mean RTs were quicker for 
dark-more concept encoding than light-more concept 
encoding (F(1,58) = 17.02, p < 0.001, η2p = 0.227) (Fig. 5B, 
left). Unlike Experiment 1, there was no significant 
interaction between encoded mapping and congruency 
(F(1,58) = 3.13, p = 0.082, η2p = 0.051), suggesting the 
dark-is-more bias operated at the conceptual level with 
no interference from conflicting numeric magnitude. 
Paired-samples t tests indicated that RTs were quicker 
for dark-more encoding than light-more encoding in the 
congruent group (t(29) = − 3.73, p < 0.001, dz = 0.681) but 
this difference did not reach statistical significance in the 

incongruent group (t(29) = − 1.92, p = 0.065, dz = 0.351). 
Taken together, this set of analyses suggests that the dark-
is-more bias was primarily driven by the conceptual level. 
Although the effect seemed weaker in the incongruent 
condition, it was not different enough from the congru-
ent condition to cause an interaction.

High‑is‑more bias
As in Experiment 1, a main effect of height encoded map-
ping indicated that mean RTs were quicker for high-more 
conceptual encoded than low-more conceptual encod-
ing (F(1,58) = 73.21, p < 0.001, η2p  = 0.558) (Fig. 5B, right). 
This effect did not significantly interact with congruency 
(F < 1) suggesting no interference from the numeric level. 
Paired-samples t tests indicated that RTs were quicker for 
high-more encoding than low-more encoding for both 
the congruent group (t(29) = − 5.61, p < 0.001, dz = 1.024) 
and the incongruent group (t(29) = − 6.82, p < 0.001, 
dz = 1.245).

Examining the RTs overall in Fig. 5A and B, it appeared 
that RTs might be slower in Experiment 2 than in Experi-
ment 1. However, an independent-samples t test showed 
no significant difference in RTs between the two experi-
ments (t(119) = − 0.68, p = 0.497, d = 0.124).

In summary, Experiment 2 suggested that the dark-is-
more bias and high-is-more bias operated at the concep-
tual level with no interference from the numeric level. 
These results were similar to Experiment 1, even though 
the task probed the “less” endpoint of the conceptual 
dimension. This similarity suggests that these biases 
reflect a true correspondence between perceptual and 
conceptual dimensions, and are not an artifact of probing 
the greater or lesser endpoint of the conceptual dimen-
sion in the experimental task.

Experiment 3
In Experiment 3, we assessed whether the dark-is-more 
bias and high-is-more bias would still operate at the con-
ceptual level if the conceptual level was less salient dur-
ing the task. To address this question, we removed the 
concept labels from the endpoints of the legends. Other-
wise, this experiment was the same as Experiment 1.

Methods
Participants
We collected data from 83 new participants before reach-
ing a target sample of 60 participants after excluding 
participants for atypical color vision (n = 7) and < 90% 
accuracy (n = 16). The final sample included 36 women 
and 24 men (mean age = 18.70), who were randomly 
assigned to either the congruent group (n = 30) or the 
incongruent group (n = 30).
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Design, displays, and procedure
The methods were the same as Experiment 1, except we 
removed the concept labels at the endpoints of the legend 
so that only the numbers remained. Thus, the congruent 
and incongruent groups saw the same experimental dis-
plays. The conceptual magnitude was only mentioned in 
the instructions, when the congruent group was asked to 
judge if the time it took animals to notice they were being 
observed by a scientist was LONGER on the left or right 
side of the observation site, and the incongruent group 
was asked to judge if the time it took animals to notice 
they were being observed by a scientist was FASTER on 
the left or right side of the observation site.

Results and discussion
We prepared the data for analysis and used the same 
mixed-design ANOVA as in Experiment 1. We report 
on the main results below and in Fig. 5C, plotted in the 
same manner as in Experiment 1. In the Additional file 1: 
Table S1 shows the full output of the analysis and Figure 
S3 shows the data plotted according to lightness encoded 
mapping and height encoded mapping for each color 
scale. None of the effects beyond those reported below 
were statistically significant.

Dark‑is‑more bias
Figure 5C (left) shows mean RTs plotted in the same man-
ner as Fig.  5A–B, but the data look quite different. The 
pattern of results is similar to the pattern if the numeric 
level dominated inferred mappings (Fig. 3, middle).

Unlike Experiments 1 and 2, there was no main effect 
of lightness encoded mapping (F(1,58) = 2.92, p = 0.093, 
η
2
p  = 0.048) but lightness encoded mapping strongly 

interacted with congruency (F(1,58) = 41.50, p < 0.001, 
η
2
p  = 0.417). To understand this interaction, we con-

ducted paired-samples t tests within each group. In the 
congruent group, participants responded quicker when 
there was dark-more concept encoding, which also cor-
responds to dark-more numeric encoding (t(29) = − 6.02, 
p < 0.001, dz = 1.100). In the incongruent group, par-
ticipants responded quicker when there was light-more 
concept encoding, corresponding to dark-more numeric 
encoding (t(29) = 3.21, p = 0.003, dz = 0.587). Taken 
together, these results suggest that when no legend text 
was present to remind participants of the concept repre-
sented in the colormaps, the dark-is-more bias operated 
at the numeric level rather than the conceptual level.

High‑is‑more bias
As in Experiments 1 and 2, RTs were quicker when the 
implied location of the label indicating more was higher 
on the legend, even though that label was not actu-
ally present on the legend (F(1,58) = 21.85, p < 0.001, η2p 

= 0.274) (Fig.  5C, right). Legend text position did not 
interact with congruency (F < 1). Paired-samples t tests 
indicated that RTs were quicker for high-more encoding 
than low-more encoding for both the congruent group 
(t(29) = − 2.55, p = 0.016, dz = 0.466) and the incongru-
ent group (t(29) = − 4.11, p < 0.001, dz = 0.751). Thus, the 
high-is-more bias operated at the conceptual level, even 
when the conceptual level was less salient due to remov-
ing the concept labels from the legend.

Examining the overall RTs in Fig. 5A and C, it appeared 
that RTs might be quicker in Experiment 3 than Experi-
ment 1. However, an independent-samples t test showed 
no significant difference in RTs between the two experi-
ments (t(119) = 1.43, p = 0.155, d = 0.260).

In summary, the results of Experiment 3 suggest that 
when the conceptual level is less salient, the dark-is-more 
bias operates at the numeric level rather than the concep-
tual level, but the high-is-more bias still operates at the 
conceptual level. These results suggest that the high-is-
more bias may be more deeply ingrained in the concep-
tual level than is the dark-is-more bias. We return to this 
possibility in the General Discussion.

Experiment 4
In Experiments 1–3, we studied inferred mappings using 
a fictitious scenario about alien animals. In Experiment 
4, we attempted to replicate the results of Experiment 1 
in a more ecologically valid scenario: antibiotic discov-
ery. Participants were told the colormaps represented 
data about the time it took microbes collected by a sci-
entist to eliminate pathogens from a Petri dish. This sce-
nario is based on real-world research in a project called 
Tiny Earth led by Dr. Jo Handelsman at the University of 
Wisconsin-Madison. The Tiny Earth project aims to “stu-
dentsource” antibiotic discovery to address the diminish-
ing supply of effective antibiotics (Hurley et al., 2021).

Methods
Participants
We collected data from 82 new participants to reach a 
target sample of 60 participants after excluding partici-
pants for atypical color vision (n = 8) and < 90% accuracy 
(n = 14). The final sample included 29 women and 31 men 
(mean age = 18.62 years), who were randomly assigned to 
either the congruent group (n = 30) or the incongruent 
group (n = 30).

Design, displays, and procedure
The methods were the same as Experiment 1, except for 
the scenario presented to participants in the instructions. 
The participants were told that a scientist gathered soil 
samples from different farms to examine in her labora-
tory. Different farms have different microbes that could 
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become antibiotics. This is an important task because 
bacteria are starting to evolve into “superbugs,” which 
are resistant to our most-used antibiotics. In the congru-
ent group, participants were asked if the time it took the 
microbes to eliminate pathogens from the Petri dish was 
LONGER on the left or right side of the given farm rep-
resented in each colormap. In the incongruent group, the 
word LONGER was replaced with FASTER. The full sets 
of instructions can be found in the Additional file 1. As in 
Experiments 1 and 2, we included the concept labels and 
numeric values on the legend.

Results and discussion
We prepared the data for analysis and used the same 
mixed-design ANOVA as in Experiment 1. We report 
on the main results below and in Fig.  6, plotted in the 
same manner as in Experiment 1. In the Additional file 1, 
Table S2 shows the full output of the analysis and Figure 
S4 shows the data plotted according to lightness encoded 
mapping and height encoded mapping for each color 
scale.4

Dark‑is‑more bias
As shown in Fig.  6 (left), mean RTs in this experiment 
resemble the pattern of results if both the conceptual 
level and numeric level influence inferred mappings 
(Fig.  4, right). A main effect of lightness encoded map-
ping indicated that RTs were quicker for dark-more 
encoding at the conceptual level (F(1,58) = 18.90, 
p < 0.001, η2p  = 0.246), but this effect interacted with 
congruency (F(1,58) = 21.15, p < 0.001, η

2
p = 0.267). 

Paired-samples t tests indicated that RTs were signifi-
cantly quicker for dark-more than light-more encoding in 
the congruent group (t(29) = − 5.37, p < 0.001, dz = 0.981), 
but this difference was not significant in the incongru-
ent group (t(29) = 0.23, p = 0.882, dz = 0.041). Thus, when 
there was a conflict between the dark-is-more bias at the 
conceptual and numeric levels, neither the conceptual 
level nor the numeric level dominated inferred mappings.

This lack of effect in the incongruent condition could 
be related to the especially quick RTs in that group. That 
is, there was a main effect of congruency (F(1,58) = 4.15, 
p = 0.046, η2p  = 0.067), with quicker RTs to report where 
microbes were faster at eliminating bacteria (incongruent 
group) than when they were asked where microbes took 
longer to eliminate bacteria. Responding according to 
faster may have been more intuitive and therefore easier 
for participants because it was better aligned with the 
domain goal of antibiotic discovery to eliminate patho-
gens. These quick RTs may have dampened any effects of 
the dark-is-more bias.

High‑is‑more bias
As in Experiments 1–3, RTs were quicker for high-more 
encoding than low-more encoding (F(1,58) = 100.11, 
p < 0.001, η2p = 0.633), see Fig.  6 (right). Again, height 
encoded mapping did not significantly interact with 
congruency (F(1,58) = 2.06, p = 0.157,  η2p = 0.034), sug-
gesting that the high-is-more bias operated at the con-
ceptual level for the congruent and incongruent groups. 
Paired-samples t tests indicated that RTs were quicker for 
high-more encoding than low-more encoding for both 
the congruent group (t(29) = − 7.37, p < 0.001, dz = 1.346) 
and the incongruent group (t(29) = − 7.03, p < 0.001, 
dz = 1.284). Here, the faster overall RTs for the incongru-
ent group did not seem to dampen the effects of the high-
is-more bias, as observed for the dark-is-more bias. This 

Fig. 6 Results of Experiment 4, plotted in the same manner as in Fig. 5 for Experiments 1–3

4 The only significant effect beyond those reported here was an interaction 
between lightness encoded mapping and height encoded mapping, where 
the dark-is-more bias was larger for high-more height concept encoding than 
low-more concept encoding (F(1,58) = 9.80, p = .003, η2p  = .145). Analogous 
interactions were previously reported in Schloss et al. (2019) and Sibrel et al. 
(2020).
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difference could be due to the high-is-more bias being 
generally stronger than the dark-is-more bias.

Overall, there was no significant difference in RTs com-
paring Experiment 4 with Experiment 1 (t(119) = 0.268, 
p = 0.789, d = 0.049).

In summary, the results of this experiment replicated 
some, but not all of the findings from Experiment 1 in 
a more ecologically valid scenario: antibiotic discovery. 
Overall, there was a dark-is-more bias at the level of 
the concept, but this effect was driven by the congru-
ent condition with no effect of lightness encoding in the 
incongruent condition. The lack of effect in the incongru-
ent condition suggests that the dark-is-more bias at the 
numeric level could have been strong enough to cancel 
out the dark-is-more bias at the conceptual level. It is also 
possible that the extremely quick RTs in the incongru-
ent condition dampened any effects of the dark-is-more 
bias. The results for the high-is-more bias were more 
straightforward. As in all the previous experiments, the 
high-is-more bias operated at the conceptual level, with 
no interference from the numeric level. Given inconsist-
encies in the present results for the dark-is-more bias 
across experiments, we sought to extend our findings to 
yet another domain, public health.

Experiment 5
In Experiment 5, we attempted to replicate the results 
of Experiment 1 in another ecologically valid scenario: 
public health across different counties. In the congru-
ent group, participants were told the data represented 
a health index, in which larger numbers indicated more 
health (e.g., the healthiest county had an index of 101). 
In the incongruent group, participants were told that the 
data represented a health ranking, in which lower ranks 
indicated more health (e.g., the healthiest county had a 
rank of 1).

Methods
Participants
We collected data from 76 new participants to reach a 
target sample of 60 participants after excluding partici-
pants for atypical color vision (n = 5) and < 90% accuracy 
(n = 11). The final sample included 42 women and 18 men 
(mean age = 18.5 years), who were randomly assigned to 
either the congruent group (n = 30) or the incongruent 
group (n = 30).

Design, displays, and procedure
The design and displays were similar to Experiment 1, 
with the following exceptions. Participants were told that 
the colormaps represented fictitious data from a health 
INDEX (congruent group) or a health RANK (incongru-
ent group). The legend numbers and labels were changed 

to fit this scenario about health data. The number scale 
next to the legend displayed the numbers “1,” “21,” “41,” 
“61,” “81,” and “101” (Fig.  7). In this experiment, both 
groups saw the same concept labels on top of the legends: 
“most healthy” and “least healthy.” For the congruent 
group, the label “most healthy” was next to the number 
101, and “least healthy” was next to the number 1. For 
the incongruent group, these pairings were switched, so 
that “most healthy” was next to the number 1 and “least 
healthy” was next to the number 101. Metric type (rank/
index) was included next to “1” and “101” on the numeric 
scale, rather than time units (sec./hr) as in the previous 
experiments.

Participants were instructed that they would see color-
maps representing data collected by a public health 
researcher about populations of people in different coun-
ties across the state. The populations varied in a health 
index/health ranking. Participants were asked to indicate 
whether populations were healthier on the left or right 
side of the colormap. The full set of instructions can be 
found in the Additional file 1.

Results and discussions
We prepared the data for analysis and used the same 
mixed-design ANOVA as in Experiment 1. We report 
on the main results below and in Fig.  8, plotted in the 
same manner as in Experiment 1. In the Additional file 1: 
Table S2 shows the full output of the analysis and Figure 
S5 shows the data plotted according to lightness encoded 
mapping and height encoded mapping for each color 
scale.5

Dark‑is‑more bias
As shown in Fig.  8 (left), mean RTs in this experiment 
look like a blend between the pattern of results if the 
conceptual level dominated inferred mappings (Fig.  3, 
left) and both the conceptual level and numeric level 
equally influenced inferred mappings (Fig.  3, right). A 
main effect of lightness encoded mapping indicated that 
RTs were quicker for dark-more concept encoding than 
light-more concept encoding (F(1,58) = 15.39, p < 0.001, 
η
2
p = 0.210). This effect did not significantly interact 

with congruency (F(1,58) = 3.84, p = 0.055, η2p = 0.062). 
Paired-samples t tests indicated that RTs were quicker 
for dark-more encoding than light-more encoding in the 
congruent group (t(29) = − 3.43, p = 0.002, dz = 0.626) but 
this difference did not reach statistical significance in the 

5 The only significant effect beyond those reported here was an interaction 
between lightness encoded mapping and height encoded mapping, in which 
the dark-is-more bias was larger for high-more height concept encoding than 
low-more concept encoding, as in Experiment 4 (F(1,58) = 4.73, p = .034, η2p = 
.075).
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incongruent group (t(29) = − 1.91, p = 0.066, dz = 0.349). 
Taken together, this set of analyses suggest that the dark-
is-more bias was primarily driven by the conceptual level. 

Although the effect seemed weaker in the incongruent 
condition, it was not different enough from the congru-
ent condition to cause an interaction.
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Fig. 8 Results of Experiment 5, plotted in the same manner as in Fig. 5 for Experiments 1–3 and Fig. 6 for Experiment 4
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High‑is‑more bias
As in the previous four experiments, the high-is-more 
bias was dominated by the conceptual level (Fig. 8, right). 
A main effect of height encoded mapping indicated that 
RTs were quicker for high-more concept encoding than 
low-more concept encoding (F(1,58) = 44.93, p < 0.001, 
η
2
p = 0.437). This factor did not interact with congruency 

(F < 1), suggesting no interference from the numeric level. 
Paired-samples t tests indicated that RTs were quicker for 
high-more encoding than low-more encoding for both 
the congruent group (t(29) = − 5.98, p < 0.001, dz = 1.091) 
and the incongruent group (t(29) = − 3.77, p < 0.001, 
dz = 0.689). Thus, the high-is-more bias operated primar-
ily at the conceptual level for both groups.

Examining the RTs overall in Figs. 5A and 7, it appeared 
that RTs might be slower in Experiment 5 than in Experi-
ment 1. This observation was supported by an independ-
ent-samples t test comparing mean RTs for Experiment 1 
versus Experiment 5 (t(119) = − 2.32, p = 0.022, d = 0.422). 
This increased response time for Experiment 5 may be 
due to the increased complexity of the legends in Experi-
ment 5, which included two-word concept labels (most 
healthy, least healthy), and condition labels next to the 
numeric scale (rank, index) rather than unit labels (sec., 
hour).

In summary, the dark-is-more bias was dominated by 
the conceptual level. Although some evidence suggested 
that the conflicting numeric level may have weakened 
this effect in the incongruent condition, the difference 
was not strong enough to cause an interaction between 
lightness encoded mapping and congruency. As in all of 
the preceding experiments, the high-is-more bias oper-
ated at the conceptual level, with no interference from 
the numeric level.

General discussion
The goal of this study was to investigate the degree to 
which inferred mappings between visual features and 
concepts operate at the conceptual and/or numeric level. 
We addressed this question by studying two biases known 
to influence inferred mappings for colormap data visuali-
zations, the dark-is-more bias and high-is-more bias. We 
examined a variety of data types and domains: response 
times of alien animals to notice scientists (Experiments 
1–3), response times of microbes to eliminate pathogens 
for antibiotic discovery (Experiment 4), and public health 
metrics across various counties (Experiment 5).

When conceptual and numeric magnitude were con-
gruent, our results replicated previous work demonstrat-
ing the dark-is-more bias (quicker RTs for dark-more 
encoding) and the high-is-more bias (quicker RTs 
for high-more encoding) (Schloss et  al., 2019; Sibrel 
et  al., 2020). These patterns persisted when the target 

concept in the experimental task was the larger endpoint 
of the conceptual dimension (Experiments 1, 3–5), or the 
smaller endpoint (Experiment 2). This finding suggests 
that these biases reflect a true correspondence between 
perceptual and conceptual dimensions and are not 
merely due to probing either the greater or lesser end-
point of the conceptual dimension in the experimental 
task.

When conceptual and numeric magnitude were incon-
gruent, we could assess the distinct effects of the con-
ceptual and numeric levels on inferred mappings. Across 
all five experiments, the high-is-more bias operated at 
the conceptual level, with no significant interference 
from the numeric level. That is, it was generally easier 
to interpret colormaps when larger conceptual magni-
tude mapped to colors positioned higher on the vertically 
oriented legend, even when larger numeric values were 
lower on the legend.

However, for the dark-is-more bias, the results for the 
incongruent condition varied across experiments. First, 
we consider the four experiments in which the concep-
tual level was labeled in the legend (Experiments 1–2 and 
4–5). In three out of the four experiments in which the 
conceptual level was labeled (Experiments 1, 2, and 5, but 
not Experiment 4) the value of mean RTs for the incon-
gruent condition was quicker for dark-more encoding at 
the conceptual level than at the numeric level, but that 
difference only reached statistical significance in Experi-
ment 1. Experiment 4 was also unique in that RTs were 
especially quick in the incongruent condition which may 
have dampened any effects of the dark-is-more bias. This 
observation was supported by a main effect of congru-
ency in Experiment 4, which was not found in the other 
experiments. In considering why the incongruent (faster) 
condition had especially quick RTs in Experiment 4, one 
possibility is that there is a value judgment on the data 
represented in the colormaps that influenced RTs. In the 
scenario described in the instructions of Experiment 4, 
the desired outcome is for microbes to eliminate patho-
gens faster (rather than take longer), so this framing of 
the task may have facilitated participant responses. In 
the scenario described in the instructions of Experiments 
1–2, it is not clear whether the desired outcome is for 
alien animals to notice they are being observed faster, 
or to take longer, so the framing may have had less of an 
effect. In Experiment 5, the target concept was the same 
(“healthier”) for both the congruent and incongruent 
groups, so there is no difference in value judgment. These 
observations suggest future studies are needed to under-
stand how value judgments about data represented in 
visualizations may influence the effects of inferred map-
pings on interpretations of visualizations.
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The only case in which the dark-is-more bias signifi-
cantly dominated at the numeric level was in Experiment 
3, when the conceptual magnitudes were not labeled on 
the legends and were only mentioned in the instructions. 
This result suggests that people need to be reminded of 
the conceptual level for it to have an effect. However, we 
caution readers against concluding that in the absence 
of concept labels, dark-more encoding at the numeric 
level will be easiest to interpret in real-world scenarios. 
In our study, the instructions describing the conceptual 
level were only provided at the beginning of the experi-
ment, and then participants completed hundreds of tri-
als without a reminder of the concepts represented in the 
visualization. In real-world scenarios, when colormaps 
are presented on the news, in research presentations, or 
in written reports, they are often accompanied by verbal 
descriptions that remind observers about concepts repre-
sented in the visualization. These verbal descriptions may 
activate the conceptual level, even when labels are absent. 
Further work is needed to understand how such addi-
tional information might influence inferred mappings.

In this study, we investigated two of many factors 
known to influence inferred mappings and found that 
the high-is-more bias consistently operated at the level 
of conceptual magnitude and the dark-is-more bias was 
more variable. A question that stems from this finding 
is, why does this difference arise? One possibility is that 
high-is-more is a stronger bias, and therefore less suscep-
tible to variation, but why might the high-is-more bias be 
stronger?

Although the origins of these biases are still unknown, 
some have argued that they may stem from ecological 
statistics. The high-is-more bias may stem from observa-
tions that height increases as objects in the world accu-
mulate or grow, like accumulating paperwork on a desk 
or growing children as they age (Tversky, 2011). The 
high-is-more bias may also be reinforced by frequent 
exposure to its effects in daily life, such as observing 
TV broadcasters gesture higher up when talking about 
larger quantities (Winter et  al., 2013). The dark-is-more 
bias may stem from observations that regions tend to get 
darker with greater accumulation, like ink on a page or 
birds in a flock (Cuff, 1973; McGranaghan, 1989). These 
observations may be strong tendencies in the world, but 
there are exceptions. For example, deeper (more) ocean 
water goes lower underground, and accumulating white 
snow on a dark pavement makes the ground appear 
lighter.

Evidence against the high-is-more bias in the real-
world could be less abundant or less visible (i.e., under-
ground) than evidence against the dark-is-more bias, 
making the high-is-more bias more robust. In fact, differ-
ences in the apparent lightness of accumulating objects 

(depending on whether objects are dark/light and the 
background is dark/light) have been purported to result 
in an entirely different bias—the opaque-is-more bias. 
In the opaque-is-more bias, observers infer that regions 
appearing more opaque (given the background color) 
map to larger quantities (Schloss et al., 2019). Critically, 
the opaque-is-more bias is not merely due to lightness 
contrast with the background because dark backgrounds 
do not lead observers to infer that lighter-colored regions 
map to larger quantities if the regions do not appear 
to vary in opacity (McGranaghan, 1989; Schloss et  al., 
2019). Future work is needed to better understand the 
origins of these biases, and whether their robustness can 
be explained by ecological regularities in the world.

Another open question concerning the robustness of 
the high-is-more bias is whether graph literacy might 
moderate the effect. The participants of the present 
experiments, all undergraduate college students, are 
assumed to have experience reading graphs, and so may 
have a level of graph literacy that prompts expectations 
about how graph legends are structured. Future work 
could investigate the high-is-more bias with people who 
have less familiarity with graphs, including children, to 
determine whether graph literacy plays a role.

Conclusions
In conclusion, this study suggests that understanding 
people’s inferences about the meaning of visual features 
in data visualizations, and perhaps perceptual features 
in data representations across modalities more broadly, 
requires considering the concepts represented by the 
data, and not just the numeric values. Across all five 
experiments, the high-is-more bias consistently operated 
at the level of conceptual magnitude, not numeric mag-
nitude. There was also a tendency for the dark-is-more 
bias to operate at the level of conceptual magnitude, but 
numeric magnitude sometimes interfered, and could 
override conceptual magnitude when conceptual mag-
nitude was less salient in the visualization. These results 
contribute to the understanding of people’s inferences 
about the meanings of colors in information visualiza-
tions, while expanding knowledge on factors relevant to 
design information visualizations that facilitate visual 
communication.
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