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Motor speed does not impact the drift 
rate: a computational HDDM approach 
to differentiate cognitive and motor speed
Joshua Sandry1* and Timothy J. Ricker2 

Abstract 

The drift diffusion model (DDM) is a widely applied computational model of decision making that allows differentia-
tion between latent cognitive and residual processes. One main assumption of the DDM that has undergone little 
empirical testing is the level of independence between cognitive and motor responses. If true, widespread incorpo-
ration of DDM estimation into applied and clinical settings could ease assessment of whether response disruption 
occurs due to cognitive or motor slowing. Across two experiments, we manipulated response force (motor speed) 
and set size to evaluate whether drift rates are independent of motor slowing or if motor slowing impacts the drift 
rate parameter. The hierarchical Bayesian drift diffusion model was used to quantify parameter estimates of drift rate, 
boundary separation, and non-decision time. Model comparison revealed changes in set size impacted the drift rate 
while changes in response force did not impact the drift rate, validating independence between drift rates and motor 
speed. Convergent validity between parameter estimates and traditional assessments of processing speed and motor 
function were weak or absent. Widespread application, including neurocognitive assessment where confounded 
changes in cognitive and motor slowing are pervasive, may provide a more process-pure measurement of informa-
tion processing speed, leading to advanced disease-symptom management.
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Significance statement
Neurological disorders may lead to both cognitive and 
physical disability, for example, slowing of information 
processing speed and/or slowing of motor function, 
respectively. Unfortunately, many commonly used neuro-
logical measures that are designed to evaluate cognitive 
changes do not account for related changes in physical 
functioning. That is, patients thinking may be evaluated 
with a timed assessment that requires them to press but-
tons on a computer keyboard or write down responses 
on a sheet of paper. In this context, a low score would be 
interpreted as a slowing of information processing speed. 

While these assessments may capture changes in infor-
mation processing speed, they would also reflect any 
comorbid changes in motor slowing. This mismeasure-
ment is problematic because it provides an unclear pic-
ture of cognitive and physical disability and presents a 
serious challenge in understanding and eventually treat-
ing cognitive disability due to neurological disorders. This 
study suggests that computational modelling approaches 
can be used to differentiate slow information process-
ing speed (cognitive) from slow motor speed (physical). 
This will help improve measurement precision of disease-
related changes, especially when applied to neurological 
conditions where both cognitive and motor functioning 
are negatively impacted.
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Introduction
People make many decisions that vary in complexity on 
a daily basis and often these decisions occur under time 
pressure. In order to understand the cognitive processes 
that underlie decision making, researchers have increas-
ing applied the drift diffusion model (DDM), a sequen-
tial sampling model, in both basic and clinical research 
(Evans & Wagenmakers, 2019; Ratcliff et al., 2016; White 
et al., 2010). The DDM is a binary evidence accumulation 
model that incorporates response time and accuracy to 
decompose behavioral data into parameter estimates that 
represent latent cognitive processes. The latent cognitive 
processes reflect the decision and non-decision aspects 
that underlie decision making.

The primary components of the DDM include drift 
rate (v), boundary separation (a), and non-decision time 
(Ter). The drift rate parameter reflects the rate of infor-
mation processing where evidence is accumulated sto-
chastically until some threshold or boundary is reached. 
Acquiring more evidence over time pushes the drift 
rate toward a decision boundary. The boundary separa-
tion parameter is an estimate of response caution or the 
degree of conservative responding and reflects the trade-
off between speed and accuracy. The non-decision time 
parameter reflects the residual aspects of the decision 
process including pre-stimulus encoding (Te) and motor 
response execution (Tr). Together, the residual encod-
ing and motor response are jointly modelled by the Ter 
parameter. In more complex instantiations of the full 
DDM, additional parameters include estimates of bias 
along with across-trial variability associated with the pri-
mary DDM parameter estimates (Ratcliff & Tuerlinckx, 
2002). While existing research supports this interpreta-
tion of the drift rate and boundary separation parameters 
(Forstmann et al., 2016; Ratcliff & McKoon, 2008; Ratcliff 
et  al., 2016), little research has directly investigated the 
degree that changes in motor speed may influence the 
drift rate (v). It is typically assumed that motor changes 
should only influence the motor execution parameter 
(Ter). We discuss these papers subsequently but first dis-
cuss the need for and limitations of applying the DDM 
clinically.

Clinical potential and limitations of the DDM
There is a strong need for more precise measurement in 
clinical research and this is one area where application 
of the DDM has strong potential (Evans & Wagenmak-
ers, 2019). In some neurological and psychiatric diseases, 
slowing of information processing speed is a common 
finding. However, the psychometric validity of this con-
clusion is somewhat tenuous. Often, processing speed 
inferences are based on murky cognitive assessments that 

tap into much more than “speed” alone (Sandry et  al., 
2021). For example, commonly used digit-symbol coding 
tests require participants to match symbols in a grid with 
corresponding digit-symbol pairings in a key in a 90  s 
time period. The number of correct responses is inferred 
as an estimate of information processing speed. The 
problem is that, along with a speeded component, these 
assessments also tap into a wide range of other cogni-
tive processes including learning and memory, language, 
visual search/attention, etc. (Jaeger, 2018; Joy et al., 2003; 
Sandry et al., 2021; Treviño et al., 2021). In this context, 
low test scores could reflect changes in cognitive speed, 
or they may reflect changes in some other cognitive, 
perceptual or sensorial process. As a result, the clinical 
description may be mischaracterized, obfuscating our 
understanding of cognitive change and leading to chal-
lenges for treatment.

The drift rate parameter may be a more accurate reflec-
tion of disease-related changes in information processing 
speed than traditional amorphous neuropsychological 
assessments. Importantly, motor slowing is comorbid 
with cognitive change in many neurological conditions, 
introducing additional psychometric challenge. For 
example, Parkinson’s disease, brain injury, stroke, cancer, 
and multiple sclerosis all may experience varying degrees 
of physical and cognitive disability. Therefore, it is criti-
cal to directly test whether any effect of motor slowing is 
captured by the drift rate. If drift rate is uncontaminated 
by motor processes, this would provide some confidence 
in using the DDM to guide clinical decision making for 
patient populations with confounded motor and cogni-
tive slowing.

DDM and motoric processes
Despite the importance of the assumption that drift 
rate is free from motoric influences for interpretation of 
empirical and clinical data, there are only a small num-
ber of studies that have investigated motor effects on the 
DDM in general. We are aware of only a few investiga-
tions that have included experimental manipulations of 
motor speed slowing and the impact on DDM param-
eters. The outcomes and conclusions of these investiga-
tions are somewhat mixed. This is partially a result of 
design limitations, as the primary research questions are 
not always aimed at understanding motor slowing effects 
on the drift rate parameter. This is the primary aim of the 
current investigation.

In one of the first investigations of how the theoretical 
DDM parameters map onto empirical data, Voss et  al. 
(2004) included a direct manipulation of motor response 
with a “response handicap condition”. In this condition, 
participants used the same finger to respond in a color 
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discrimination task. Their response finger was positioned 
centrally on the B key of the keyboard, between the C and 
M response keys.1 This manipulation added additional 
motor travel time to the participants response. Impor-
tantly, this travel time manipulation may differ from a 
motor slowing manipulation. In the critical compari-
son, the response handicap condition led to larger val-
ues of non-decision time, suggesting some support for 
this parameter reflecting motor processes. The authors 
also reported a decrease in drift rate (v) for the response 
handicap (motor travel) condition in comparison with 
the non-handicap condition, which may imply drift rate 
is not immune to the effect of motor slowing.

Similar findings of motor speed impacting drift rate 
were subsequently reported by the same group. Specifi-
cally, participants were asked to make a stimulus keypress 
response three times in a row for each trial. Response 
accuracies and latencies were collected for each key-
press to estimate three DDM’s and evaluate changes in 
non-decision time along with other DDM parameters, 
across each of the three sequential responses. The find-
ings showed the expected effect of longer non-decision 
times for the second in comparison with the first key 
press. The keypress manipulation also resulted in unex-
pectedly smaller drift rates and lower boundaries. In fact, 
the effect on drift rates was larger than the effect on non-
decision time. This may imply the DDM parameters are 
either indiscriminate or that the experimental manipula-
tion of motor speed was invalid (Lerche & Voss, 2019). 
In contrast, Gomez et al. (2015) compared drift rates as 
a function of three response modalities: eye-movements, 
key-presses and a touchscreen display and reported 
no differences in drift rate as a function of response 
modality.

Other investigations have applied alternative 
approaches to evaluate the relationship between motor 
speed and DDM parameter estimates. For example, 
Weindel et  al. (2021a) used electromyograph (EMG) 
to record neurophysiological activation of the effec-
tor responding muscle and mapped this measurement 
onto the latent process of non-decision motor response 
time. This design allowed encoding time (Te) to be par-
titioned from response execution time (Tr). Across two 
experiments, the authors reported that within partici-
pant manipulations of perceptual difficulty along with 
manipulations of speed and accuracy both impacted 
the response execution/motor time component of Ter. 

Additionally, the authors included a between-experi-
ment manipulation of response force. The force thresh-
old required to depress the key and record the response 
required less force in experiment 2 in comparison with 
experiment 1. Somewhat unexpectedly, the analysis of 
non-decision time across the two experiments revealed 
no difference as a function of the response force manip-
ulation with nearly identical parameter estimates. An 
additional finding beyond evaluating non-decision 
time that was not discussed, and particularly relevant 
to the present research, was that the between-experi-
ment manipulation of response force may have also led 
to changes in drift rate. The interpretation of the motor 
speed manipulation on non-decision time is limited 
because the between experiment manipulation was not 
optimized to evaluate the impact of response force on 
drift rate. There were other subtle design changes across 
experiments 1 and 2 that introduce additional challenges 
for a meaningful and unbiased comparison, for example, 
a change in the difficulty level across experiments. These 
differences render it challenging for direct comparison 
across experiments and whether or not we would expect 
to observe any differences in drift rate as a function of 
the motor speed manipulation. It is reasonable to sup-
pose that a within participant experimental manipulation 
of response force would cause expected changes in non-
decision time and permit a reliable evaluation of motor 
speed effects on drift rates.

Present experiments
In the present research, we contrast an Independence 
Hypothesis, whereby changes in motor speed will impact 
non-decision times but they will not impact drift rates 
against a Non-Independence Hypothesis, whereby changes 
in motor speed will impact both non-decision times and 
drift rates. Specifically, under optimized design condi-
tions, absence of an effect of motor response force on 
drift rate with presence of an effect of motor response 
force on non-decision time would provide strong evi-
dence in favor of an Independence Hypothesis. Alterna-
tively, under the same conditions, presence of an effect 
of motor response force on drift rate with presence of 
an effect of motor response force on non-decision time 
would provide strong evidence in favor of a Non-Inde-
pendence Hypothesis. If verified, data in favor of the Inde-
pendence Hypothesis would provide compelling evidence 
to continue to integrate the DDM analytic approach into 
clinical research and practice. We aim to fill this gap in 
the present investigation by directly manipulating (1) 
motor response force by changing the spring pressure 
in customized response button boxes and (2) set size by 
varying the number of stimuli presented to participants. 
These manipulations allow us to observe how DDM 

1  The methodology of Voss et al. (2004) is ambiguous with respect to the par-
ticipants’ specific requirement in the non-handicap condition. We assume 
that participants positioned their left and right hands on the C and M keys. 
It is also possible that participants used two fingers from the same hand. In 
either case, the handicap condition required movement between keys, which 
we assume was not a requirement in the comparison non-handicap condition.
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parameter estimates may change across the full factorial 
of experimental conditions. We note that independence 
in the context of the present investigation is operation-
alized as measurement independence between evidence 
accumulation (central nervous system) and physical 
motor execution measured at the hand (peripheral nerv-
ous system). This differs from other theoretical concep-
tualizations of independence that differentiate between 
more than one motor component. For example, a cogni-
tive premotor planning/initiation component along with 
physical motor speed. That is, fractionating non-decision 
time, and specifically Tr, into premotor planning + motor 
time (Servant et  al., 2021). We focus our manipula-
tions and questions specifically on whether physical 
motor slowing is or is not captured by the drift rate (v) 
parameter.

Modelling hypothesis
On the basis of diffusion model assumptions, available 
literature, and manipulations in the present study, we 
made the following primary modelling predictions. Spe-
cifically, given larger set sizes should require more cogni-
tive resources, we expected an effect of Set Size to change 
the drift rate. Additionally, given the larger set size 
includes more letters/symbols stimuli, we expected this 
manipulation to also affect perceptual/encoding time dif-
ferences. That is, we expected the set size manipulation 
to also manifest in the non-decision time parameters. 
Given the motor speed manipulation should only serve to 
slow motor speed execution and not differentially enlist 
cognitive resources, we expected only a change in the 
non-decision time parameter as a function of the Spring 
Pressure manipulation. While boundary separation is not 
the primary focus of the present investigation, the inten-
sity of the motor response may lead to slower responses 
in the stiff condition. This may manifest as an effect of 
motor response on boundary separation. Moreover, inas-
much as different set sizes reflect a task difficulty manip-
ulation and task difficulty does not change boundaries 
(Mulder et al., 2013; Voss et al., 2004), as boundaries may 
be set by the participant a priori, we deemed it unlikely 
to see an effect of the set size manipulation on bound-
ary separation. Although we note there seems to be lim-
ited research into this area so we leave this prediction 
unconstrained.

Method
We present two experiments investigating the effect 
of motor slowing on DDM parameter estimates. All 
designs and procedures are identical across experiments 
except for the stimulus materials. Data for both experi-
ments are available here: https://​osf.​io/​w9s4q. This study 

received IRB approval. None of the experiments were 
preregistered.

Participants
A prior investigation of the DDM that included a motor 
manipulation reported a sample size of N = 36 partici-
pants (Voss et al., 2004). Our sampling strategy in Experi-
ment 1 was to post study timeslots for a few weeks in 
advance with the goal of collecting at least 36 partici-
pants, then ceasing recruitment of new participants. Our 
sample size ended up larger than 36 because we com-
pleted data collection of participants that were already 
signed up for the study at the time we closed new recruit-
ment. Given evidence for motor speed effects in Experi-
ment 1, we planned to recruit about the same number of 
participants in Experiment 2. Students participated for 
partial course credit or entry into a $100 gift card lottery 
(x5 gift card drawings) with N = 53 in Experiment 1 and 
N = 51 in Experiment 2. The experimental task malfunc-
tioned for one participant in Experiment 1 and two par-
ticipants in Experiment 2 and their data was not included 
as part of the final samples.

Assessments
Commonly used clinical assessments of information pro-
cessing speed2 and upper extremity functioning were 
administered to all participants in the same order prior 
to the experimental procedure. Inclusion of these meas-
ures afford the opportunity to assess convergent validity 
between DDM parameter estimates and more traditional 
measures of cognitive and motor speed, respectively.

Oral and written symbol digit modalities test
On the symbol digit modalities test (Smith, 2002), par-
ticipants are presented with a grid of symbols on a single 
sheet of paper along with an answer key of symbol-digit 
pairings positioned at the top. Participants use the key to 
indicate the number from the key that matches the sym-
bol in the grid in 90 s and their score is total number cor-
rect. Participants completed an oral (responses are stated 
orally) and written (responses are written below each 
symbol) version.

Nine‑hole peg test
On the nine-hole peg test (Mathiowetz et al., 1985), par-
ticipants repeatedly place and remove nine small pegs 
into holes on a board, as quickly as possible. Participants 

2  We use the label “information processing speed” here, in the general sense to 
remain consistent with the clinical literature. See the Introduction for details 
about the amorphous nature of this assessment and similar digit-symbol tests.

https://osf.io/w9s4q
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completed 5 trials for each hand and their score was the 
average time across all trials.

Design
2 Spring Pressure (Stiff vs. Soft) X 2 set size (3 vs. 5) 
within participant design.

Materials and apparatus
Motor speed was manipulated by adjusting button spring 
pressure in custom-fabricated response button boxes 
with the following specifications (Fig.  1A). A custom-
designed Adafruit ItsyBitsy 32u4–5  V 16  MHz printed 
circuit board main microcontroller and Texas Instru-
ments logic gate connector (SN74AHC132D) were 
encapsulated inside of a rectangular box enclosure (4.8 in 
L × 3.2 in W × 4.8 in H), with two concave arcade-style 
button/microswitches. Response pressure was manipu-
lated by using two different types of compression springs. 
Two different response boxes were used and interchanged 
over the course of the study. The response boxes were 
identical aside from the spring. One response box housed 
the stiff springs and the other response box housed the 
soft springs. The Soft spring pressure response box used 
standard springs (spring rate 0.37  lb/inch [0.04 N]). The 
Stiff spring pressure response box used replacement stiff 
compression springs (spring rate 11.4 lb/inch [1.3 N]) to 
simulate motor slowing. There was a total of 4 response 
boxes (2 stiff and 2 soft) which allowed us to test up to 
two participants at a time, in separate testing rooms.

Procedures
Experiment 1 was a letter comparison task using English 
letters but excluding the 6 vowels AEIOUY to avoid word 
or non-word configurations across letter combinations or 
comparison by covert or overt verbalization. The letter 
comparison task is a closely matched computerized ver-
sion of the paper and pencil letter comparison task (Salt-
house, 1993; Salthouse & Babcock, 1991). Experiment 
2 was a pattern comparison task that used 9 symbols 
designed to be similar to digit-symbol substitution tests 
used clinically. During the experimental task, a blank 
inter-trial-interval was randomly presented for between 
0.5 and 3.0  s. This was followed by two letter/symbol 
strings either 3 or 5 characters long (set size manipula-
tion) simultaneously presented on the left and right side 
of the screen (5.0 s). The strings matched on half of the 
trials and did not match on the other half of trials. Trials 
were presented in a randomized order and participants 
pressed the green button if the strings were the same 
(match) or red button if the strings were different (no-
match). Feedback consisting of the participants’ response 
time and accuracy followed and remained on the screen 
for 0.5 s. The first 24 trials of each block were operation-
alized as practice leaving a total of 150 experimental tri-
als per condition, for 600 total trials (Fig. 1B).

The order of the Spring Pressure manipulation was 
counterbalanced across 2 blocks. The research assis-
tant set up the equipment prior to participant arrival. 
Participants were blind to condition, naïve to the pur-
pose of the experiment and naïve to the Spring Pressure 
manipulation. After completing the first block of trials, 

Fig. 1  A Response button box and B figure timeline; variable inter-trial interval (0.5 to 3.0 s) was followed by a two-alternative forced choice letter 
(experiment 1) or pattern comparison (experiment 2) decision (3 vs. 6 set size) followed by feedback (0.5). Small set size and different (no match) 
trial with feedback for a correct response depicted for Experiment 1 and large set size same (match) trial with feedback for an incorrect response 
depicted for Experiment 2
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participants were asked to take a brief break and wait 
outside of the testing room, at which point the research 
assistant swapped out the response box to be used in 
block 2, unbeknownst to participants. A small proportion 
of participants reported noticing the buttons “felt differ-
ent” or were harder/easier to press (2/53 Experiment 1; 
6/51 Experiment 2) and informally mentioned this to the 
research assistant at the end of the testing session—all 
participant-reported feedback was documented.

Data preprocessing and exclusionary criteria
The first 24 practice trials from each block were dis-
carded. Participants who performed at or below chance 
in a single condition (N = 0 Experiment 1; N = 1 Experi-
ment 2) and participants whose attention and effort on 
the task could not be verified (operationalized as per-
formances ≤ 2 standard deviations below group-level 
accuracy along with participants with abnormally short 
or long RTs, ≤≥ 2 standard deviations shorter/longer 
than the group-level mean; N = 5 Experiment 1; N = 3 
Experiment 2) were excluded from all analyses. Response 
times shorter than 0.2 s or longer than 3 standard devia-
tions above the participants mean were discarded. This 
resulted in removal of 0.69% of trials in Experiment 1 and 
0.54% of trials in Experiment 2.

Data analysis
Behavioral accuracy and response time
We use Bayes factors for ANOVAs and t-tests as our 
primary inferential approach to understanding changes 
in behavioral measures of accuracy and reaction times 
across conditions. Bayes factors are presented as the ratio 
between the probability of the data given an effect (alter-
native) to the probability of the data given no effect (null). 
In this context, a value of 7 in support of an effect should 
be interpreted as the alternative being 7 times more likely 
than the null. To calculate the Bayes factors for each main 
effect and interaction listed in the text we first found the 
best fitting model and then compared it to the equivalent 
model including or excluding each effect as appropri-
ate. Bayes factors for each of the possible combinations 
of main effects and interaction are included in Table  1 
relative to the null effects model. Bayes factors were cal-
culated using the default Cauchy prior with a scale of 
r = 0.0707. All statistical analyses were computed using 
the BayesFactor package (Morey & Rouder, 2015) in R 
version 4.0.3.

Hierarchical drift diffusion model parameter estimation
We implemented computational modelling with a Bayes-
ian hierarchical drift diffusion model (HDDM) using the 
HDDM 0.6.0 Python toolbox (Wiecki et al., 2013) to eval-
uate differences across drift rate, boundary separation 

and non-decision time as a function of experimental 
manipulations of set size and spring pressure Condi-
tion. The hierarchical Bayesian implementation of the 
drift diffusion model allows for estimation and recovery 
of model parameters at the subject level and constrained 
by the group. We identified several theoretically mean-
ingful combinations of drift rate, boundary separation, 
and non-decision time and fit each of these versions of 
the model with the corresponding parameters, v, a, and 
Ter, allowed to vary freely across conditions (see Table 2 
for all models) using Markov Chain Monte Carlo simula-
tion. Bias (z) and inter-trial variability parameters (sv, st, 
sz) were included in all models but constrained as group 
only node estimates given the challenges and uncertainty 
associated with estimating inter-trial variability param-
eters (Boehm et al., 2018; Wiecki et al., 2013). To ensure 
adequate posterior estimation we ran 5000 sampling iter-
ations and discarded the first 1000 iterations of the chain 
as burn-in. We conservatively specified a 5% probability 
of outliers and assigned outliers to a uniform outlier dis-
tribution using the p_outlier command.

Model selection
Trace and convergence chains were first visually 
inspected to verify model convergence. To verify that 
acceptable model fits were obtained we compared pos-
terior predictive cumulative-distribution-function quan-
tile plots to the empirical data for each participant fit 
(see https://​osf.​io/​w9s4q). To determine the best model 
of how the manipulations affected cognitive processing, 
candidate models were compared using Bayesian Predic-
tive Information Criterion (BPIC) (Ando, 2007) to evalu-
ate goodness of model fit. BPIC combines the likelihood 

Table 1  Bayes factor ANOVA statistics for behavioral accuracy 
and response time

Listed values are relative to the null model (see, “Behavioral accuracy and 
response time” section in main text for additional clarification)

Accuracy Response time

Experiment 1

 Spring pressure 4.19E+01 6.55E+02

 Set size 5.72E+15 2.07E+33

 Spring pressure + set size 1.62E+19 2.76E+45

 Spring pressure + set 
size + spring pressure × set size

5.67E+18 5.63E+44

Experiment 2

 Spring pressure 2.74E+00 1.52E+00

 Set size 1.27E+10 2.70E+38

 Spring pressure + set size 1.32E+11 3.86E+41

 Spring pressure + set 
size + spring pressure × set size

3.13E+10 8.46E+40

https://osf.io/w9s4q
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function with a penalty for model complexity to evaluate 
the fit of the model. Lower values indicate better fit. BPIC 
is advantageous in that it applies a more stringent cor-
rection than Deviance Information Criterion by using a 
larger penalty term for each additional model parameter.

Correlations
We computed the Pearson correlation between the 
HDDM drift rate and non-decision time parameter 
estimates (model 4, see below) to further evaluate the 
dependence/independence between these two estimates. 
Additionally, we correlated the HDDM parameter esti-
mates with participants performances on both versions 
(oral and written) of the symbol digit modalities test 
and nine-hole peg test to evaluate convergent validity 
between the DDM parameter estimates and assessments 
commonly used in practice. Because the only difference 
between Experiments 1 and 2 was the type of stimulus 
materials used, we present the correlational analyses with 
data collapsed across Experiments 1 and 2 to increase 
power.

Results and discussion
Experiment 1: letter comparison
Accuracy
The evidence favored the model with 2 main effects, 
BF = 1.6X1019, with evidence against keeping the model 
with the interaction, BF = 0.35. Accuracy decreased 
with larger set sizes. Accuracy was higher in the Stiff in 
contrast to Soft Spring Pressure Condition (Table 1 and 
Fig. 1a).

Table 2  Model fits for Experiments 1 and 2 and model selection using Bayesian Predictive Information Criterion (BPIC)

Table indicates parameter estimates that were allowed to vary for each model

SS set size, SPC spring pressure condition

Model Drift Rate (v) Boundary 
separation (a)

Non-decision 
time (Ter)

Experiment 1 Experiment 2

BPIC Difference from 
best model

BPIC Difference 
from best 
model

Model 1 (full model) SS, SPC SS, SPC SS, SPC 24,498 34 55,216 100

Model 2 SPC SS, SPC SS, SPC 25,111 647 55,510 394

Model 3 SS SS, SPC 24,786 322 55,758 642

Model 4 SS SS, SPC SS, SPC 24,464 0 55,150 34

Model 5 SS SS SS, SPC 24,664 200 55,116 0

Model 6 SS SPC SS, SPC 24,592 128 55,765 649

Model 7 SS SS, SPC SS 24,697 233 55,474 358

Model 8 SS SS, SPC SPC 25,021 557 55,574 458

Model 9 SS, SPC 26,058 1594 56,492 1376
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Fig. 2  Mean accuracy and response time for Experiments 1 (A, B) 
and Experiment 2 (C, D). SS set size. Error bars are standard error of 
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Response time
The evidence favored the model with 2 main effects, 
BF = 2.8X1045, with evidence against keeping the model 
with the interaction, BF = 0.20. Response times were 
longer in the larger set size condition. Response times 
were longer in the Stiff in contrast to the Soft Spring 
Pressure Condition (Table 1 and Fig. 2b).

HDDM model comparison
Table  2 lists the model fit indices in BPIC for all esti-
mated models. Experiment 1 indicates two viable mod-
els with similar fits. The remaining models exhibit large 
increases in BPIC relative to the two best-fitting models. 
The two viable models are the full model (model 1) and 
the full model on boundary separation and non-decision 
time, but only an effect of set size on the drift rate (model 
4). Model 4 had the better overall fit of the two models. 
Table 3 provides parameter estimates for Models 1 and 4 
(see also, Fig. 3).

The difference between models 1 and 4 is that model 1 
includes an effect of Spring Pressure on drift rate whereas 
model 4 does not. Given the similar BPIC values for both 
models 1 and 4, we verified that there was no effect of 
spring pressure on drift rate by inspecting the 95% cred-
ible intervals for drift rate parameters in model 1 (see 
Table  3). At each set size the 95% CIs for the stiff drift 
rate encompasses the mean soft drift rate. Similarly, the 

95% CIs for the soft drift rate always encompasses the 
mean stiff drift rate. This provides converging evidence to 
the BPIC fits that drift rate is not affected by the Spring 
Pressure manipulation.

Discussion
The primary findings from Experiment 1 demonstrate 
both the set size and spring pressure manipulation 
effectively change participants’ performances. Inter-
estingly, we did find evidence that the Spring Pressure 
manipulation changed how accurate participants were, 
with more accurate responses in the Stiff in comparison 
with the Soft condition. The opposite pattern is evident 
in response time. The contrary effects across accu-
racy and response time in the Spring Pressure Condi-
tion implies a speed-accuracy trade-off induced by 
the response interface. One possibility is that the Stiff 
condition allowed participants to recover from incor-
rect responses. That is, if making a response and using 
the stiff button box, participants may have been able to 
rectify an incorrect button press and change to the cor-
rect response before fully depressing the response but-
ton. While the stiff spring pressure condition required 
more motor force to depress, it was more forgiving and 
allowed correction of errors. If this was the case, it ele-
gantly explains higher accuracy in the stiff condition in 
comparison to the Soft condition.

Table 3  Experiment 1 and 2 mean parameter estimates for Model 1 (full model on drift rate, boundary separation and non-decision 
time), Model 4 (full model on boundary separation and non-decision time, but only an effect of set size on the drift rate) and Model 5 
(full model on non-decision time, but only an effect of set size on drift rate and boundary separation) and [2.5 to 97.5] quartiles for the 
posterior distributions

SS set size

Drift rate (v) Boundary Separation (a) Non-decision time (Ter)

SS 3 SS 5 SS 3 SS 5 SS 3 SS 5

Exp 1

 Model 1

  Soft 2.60 [2.45 to 2.75] 1.73 [1.60 to 1.87] 1.81 [1.65 to 1.97] 2.02 [1.85 to 2.19] 0.58 [0.55 to 0.61] 0.71 [0.67 to 0.74]

  Stiff 2.57 [2.43 to 2.71] 1.86 [1.72 to 1.99] 2.16 [1.99 to 2.35] 2.26 [2.09 to 2.43] 0.62 [0.59 to 0.66] 0.80 [0.76 to 0.83]

 Model 4

  Soft 2.57 [2.44 to 1.94] 1.78 [1.66 to 2.18] 1.78 [1.61 to 2.71] 2.01 [1.86 to 1.91] 0.58 [0.55 to 0.61] 0.70 [0.67 to 0.74]

  Stiff 2.57 [2.44 to 2.32] 1.78 [1.66 to 2.37] 2.14 [1.98 to 2.71] 2.20 [2.04 to 1.91] 0.62 [0.59 to 0.66] 0.80 [0.76 to 0.83]

Exp 2

 Model 4

  Soft 1.89 [1.76 to 2.03] 1.32 [1.19 to 1.45] 1.86 [1.65 to 2.07] 2.35 [2.13 to 2.59] 1.07 [1.02 to 1.12] 1.23 [1.16 to 1.29]

  Stiff 1.89 [1.76 to 2.03] 1.32 [1.19 to 1.45] 2.02 [1.81 to 2.23] 2.48 [2.24 to 2.73] 1.12 [1.06 to 1.17] 1.28 [1.21 to 1.34]

 Model 5

  Soft 1.87 [1.71 to 2.03] 1.42 [1.26 to 1.58] 2.15 [1.87 to 2.46] 2.63 [2.31 to 2.98] 1.06 [1.00 to 1.11] 1.20 [1.14 to 1.26]

  Stiff 1.87 [1.71 to 2.03] 1.42 [1.26 to 1.58] 2.15 [1.87 to 2.46] 2.63 [2.31 to 2.98] 1.14 [1.08 to 1.19] 1.26 [1.19 to 1.32]
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HDDM estimation based upon the data from Experi-
ment 1 indicate that drift rate is only affected by the cog-
nitive set size manipulation while boundary separation 
and non-decision time parameters are affected by both 
cognitive and motor conditions. These data patterns sup-
port the Independence Hypothesis for drift rate and imply 
that the DDM and drift rate may be clinically useful for 
diseases with confounded motor and cognitive slow-
ing. The effect of motor speed slowing on the cognitive 
boundary separation parameter is at first perplexing, but 
likely reflects the increased ability of participants to pre-
vent accidental presses of the wrong button as reflected 
in the speed-accuracy trade-off interpretation above. This 
finding is in line with investigations reporting a motor 
contribution to the speed-accuracy trade-off with faster 
motor processes when under time pressure (Burle et al., 
2014; Servant et  al., 2015; Spieser et  al., 2017; Weindel 

et al., 2021a). We discuss this in more detail in the “Gen-
eral discussion” section.

The letter stimuli in Experiment 1 were highly familiar 
letters. The nature of the letter stimuli deviated some-
what from more current clinical assessments that make 
use of less familiar stimuli (e.g., symbols). As a result, we 
changed the stimuli in Experiment 2 to symbols instead 
of letters, which we assume will reduce familiarity and 
increase the level of difficulty of the task. This stimulus 
change also brings the procedure more closely aligned 
to digit-symbol substitution tests used clinically. This 
change provides conceptual replication of Experiment 
1 while simultaneously allowing us to evaluate conver-
gent validity between the two modelling analyses across 
experiments. Because participants are highly familiar 
with letter-recognition (Krueger, 1975), the stimulus 
change from familiar letters to unfamiliar symbols should 
also change the amount of time needed to encode the 
information. This may manifest as larger non-decision 
times in Experiment 2. We reevaluate the findings of 
Experiment 1 but use these revised less familiar symbol 
stimuli in Experiment 2.

Experiment 2: pattern comparison
Accuracy
The evidence favored the model with 2 main effects, 
BF = 1.3X1011, with evidence against keeping the model 
with the interaction, BF = 0.24. Accuracy decreased 
with larger set sizes. Accuracy was higher in the Stiff in 
contrast to Soft Spring Pressure Condition (Table 1 and 
Fig. 1c).

Response time
The evidence favored the model with 2 main effects, 
BF = 3.9X1041, with evidence against keeping the model 
with the interaction, BF = 0.22. Response times were 
longer in the larger set size condition. Response times 
were longer in the Stiff in contrast to Soft Spring Pressure 
Condition (Table 1 and Fig. 2d).

HDDM model comparison
Table  2 lists the model fit indices in BPIC for all esti-
mated models. Experiment 2 indicates two viable models 
with similar fits, models 4 and 5. Model 5 had the bet-
ter fit of the two. The remaining models exhibit large 
increases in BPIC relative to the two best-fitting models. 
The difference between models 4 and 5 is inclusion of the 
effect of Spring Pressure Condition on boundary separa-
tion for model 4 but not for model 5. In both models 4 
and 5, there is no effect of Spring Pressure on drift rate 
(Table 2 and Fig. 3).

Fig. 3  Mean parameter estimates (drift rate [v], boundary separation 
[a] and non-decision time [Ter]) for Experiment 1 model 4 (A) and 
Experiment 2 model 4 (B) and model 5 (C). SS set size. Error bars are 
95% credible intervals
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Discussion
The critical pattern of findings in Experiment 1 were rep-
licated in Experiment 2 with an alternative stimulus set, 
adding support for the Independence Hypothesis and use 
of the DDM and drift rate as a clinical estimate of “speed”. 
Although model fits differed slightly in Experiment 2, 
the difference was not relevant to the central theoretical 
focus of our analysis. Interestingly, the speed-accuracy 
trade-off under the Spring Pressure manipulation was 
also corroborated. This provides additional across experi-
ment evidence for a speed-accuracy tradeoff when motor 
response is stiff. Because the same patterns emerged 
across experiments, we reserve detailed discussion of 
these replicated findings in the “General discussion” 
section.

Across experiment correlational analyses
All correlations are presented in Table  4 and are com-
puted using the parameter estimates from model 4, col-
lapsed across experiments 1 and 2. Given our hypotheses 
were specific to (a) drift rate and non-decision time and 
(b) how these may relate to supplemental assessments 
(convergent validity) we focus primarily on interpreting 
these correlations.

Intercorrelation across HDDM parameter estimates
The drift rate parameter estimates for both set sizes 3 and 
5 were negatively correlated with all non-decision time 
parameter estimates. This pattern was evident across all 
set size and spring pressure conditions (Table 4).

It is important to remember that non-decision time 
captures multiple elements; time to encode the rep-
resentation (Te) and motor response execution speed 
(Tr) (Weindel et  al., 2021a). The correlations reported 
here may reflect individual differences in general cogni-
tive information processing ability. That is, participants 
who are faster at encoding (Te) would likely also likely 
be faster at evidence accumulation. The present experi-
mental manipulations and modelling approach provide 
support that drift rate is independent of motor execution 
time (Tr). The correlation between parameters suggest 
that non-decision time may not be completely independ-
ent from drift rates, e.g., encoding and motor planning in 
the brain.

HDDM X supplemental assessments
The drift rate parameter was moderately positively cor-
related with both the oral and written version of the sym-
bol digit modalities test. Specifically, participants who 
performed better on the symbol digit modalities test 

also had larger drift rates. This provides evidence that 
the symbol digit modalities test only has a small cogni-
tive “speed” component (Average r2 = 0.08). There were 
no correlations between the nine-hole peg test and non-
decision time parameters. Lack of a relationship provides 
support that the nine-hole peg test may be an independ-
ent measure of motor speed/coordination that does not 
overlap non-decision time.

General discussion
One of the primary assumptions of the DDM is that drift 
rate is uncontaminated and independent of motor pro-
cesses. Interestingly, the validity of this assumption has 
undergone little direct empirical evaluation. The veracity 
of this assumption is critical for both basic research and 
clinical investigations that aim to model latent cognitive 
processes involved in decision making. This is especially 
true in clinical research where terms like “processing 
speed” are attributed to multifarious measures and dis-
ease processes may lead to both cognitive and motor 
slowing. Cognitive and motor disease-related changes 
introduce a unique confound into psychometric meas-
urement. Therefore, a measurement technique that disso-
ciates motor and cognitive speed has strong potential as 
a clinical trial outcome measure. Across two experiments 
we manipulated motor speed by changing the amount 
of spring pressure required to depress the response key. 
Our findings provide empirical support for the Independ-
ence Hypothesis. That is, changes in motor speed cause 
changes in non-decision time, however, changes in motor 
speed do not cause changes to the drift rate. These data 
support the assumption that the drift rate is uncontami-
nated by motor speed slowing.

Set size effects on DDM parameter estimates
While the primary purpose of the present investigation 
was to evaluate the influence of motor speed on the drift 
rate parameter, there are additional findings that are of 
theoretical interest. We first discuss these findings and 
then return to interpret the findings of the main aim in 
the next section. The outcome of the HDDM computa-
tional modelling demonstrates that drift rate is affected 
by the cognitive set size manipulation while bound-
ary separation and non-decision time parameters are 
affected by both the cognitive and motor manipulations. 
We discuss each of the effects of set size on the DDM 
parameters in turn.

The effect of set size on drift rate suggests that drift 
rate is a sensitive measure of the rate of information 
accumulation that is impacted by the challenging nature 
of the task. Larger set sizes should require more cogni-
tive resources to make comparative judgments, and this 
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is evident in that larger set sizes had smaller drift rates 
while the small set size had larger drift rates. The effect 
of the set size manipulation was also evident for the 
boundary separation and non-decision time parameters. 
The nature of the set size effect on boundaries indicated 
higher boundaries for larger set sizes and this replicated 
across Experiments 1 and 2. This may be interpreted as 
larger set sizes requiring more information be accumu-
lated before a response is initiated. The effect of set size 
on non-decision time likely reflects more time devoted to 
encoding and comparison processes with larger set sizes. 
This interpretation is further supported by a between 
experiment difference in non-decision times. With spring 
pressure held constant across experiments, the only dif-
ference came down to the nature of the stimuli used. 
Non-decision times were larger in Experiment 2 with 
less familiar symbol stimuli in contrast to the famil-
iar letter stimuli used in Experiment 1. In sum, the set 
size manipulation manifests as an effect across all three 
HDDM parameters due to the multiple cognitive pro-
cessing components that are required to make the cogni-
tive decision. Crucially, the experimental manipulations 
and modelling suggest drift rate is independent from the 
influence of motor speed effects. Interestingly, the cor-
relational analyses show evidence for moderate negative 
correlations between the drift rate and non-decision time 
parameters. Specifically, larger drift rates were related 
to smaller non-decision times. This is likely a necessary 
consequence of the experimental design and how limited 
cognitive resources would need to be distributed more 
widely across items in the higher compared to lower cog-
nitive load conditions, set size 5 versus set size 3, respec-
tively. Specifically, the division of resources across items 
would be reflected in a lower drift rate and a higher 
encoding time. That is, more items/information in set 
size 5 would require additional processing to develop a 
stable representation, resulting in a correlation between 
drift rates and non-decision times.

Motor speed effects on DDM parameter estimates
A prerequisite for the present research was to effectively 
manipulate motor speed, something that there is mixed 
support for in past research. For example, some inves-
tigations report effects of experimental motor speed 
manipulations that lead to changes in non-decision time 
(Lerche & Voss, 2019; Voss et  al., 2004), whereas other 
investigations report no effect of motor speed manipu-
lations on non-decision time (Gomez et al., 2015; Wein-
del et  al., 2021a). We designed custom response boxes 
that accommodated stiff springs and used a within par-
ticipant manipulation. The data support the expected 
effect of motor speed slowing on non-decision time. This 
effect provides confirmatory evidence that the motor 

speed manipulation was successful. This is in contrast to 
Weindel et  al. (2021a) who used a between experiment 
spring pressure manipulation and reported no changes 
in non-decision time. In that investigation, the difference 
between the soft and stiff springs was only 3 times larger 
in magnitude, 2  N versus 6  N, respectively. The relative 
difference between the soft and stiff spring in the present 
investigation was about 31 times larger in magnitude, 
0.04  N  g versus 1.3  N, respectively. The larger differ-
ence in the present investigation required more force to 
depress the response key in the stiff relative to soft condi-
tion. This difference likely maximized motor slowing into 
an observable effect.3 However, the absolute difference in 
Weindel et al. was 4 N while the absolute difference in the 
present investigation was 0.9 N and differences in magni-
tude may not completely account for the discrepant find-
ings across studies. The within participant manipulation 
used presently would reduce between participant/experi-
ment variability that may have obfuscated an effect in 
Weindel et al. (2021a). Together, the presence of an effect 
of the Spring Pressure manipulation on non-decision 
time and absence of this effect on drift rate is critical for 
interpretation of independence of motor speed on drift 
rates.

One auxiliary finding in the present research was a 
trade-off in speed and accuracy as a function of the Spring 
Pressure manipulation. Specifically, behavioral accuracy 
was higher in the stiff motor speed condition and behav-
ioral response times were also longer. This performance 
trade-off replicated across Experiments 1 and 2. The out-
come of the HDDM computational modelling also sup-
ported the finding with a clear effect in the boundary 
separation parameter for the Spring Pressure Condition 
in experiment 1 and some evidence for this same pat-
tern in experiment 2 for model 4 but not model 5. The 
nature of the difference was wider boundaries for the 
Stiff condition that can be interpreted as more cautious 
responding in this condition. Initially, understanding why 
a motor speed manipulation would cause a change in 
response caution seems perplexing. However, this effect 
can be elegantly explained when considering the nature 
of responding. Specifically, errors may be more forgiving 
when the spring pressure was more difficult to depress. 
For example, consider a situation where the participant 
is presented with a no-match trial and they begin to ini-
tiate a “same” response out of habit or without properly 

3  In a preliminary pilot experiment using a design similar to the present 
experiments, we changed the spring pressure in mechanical keyboards 
(0.004 N vs. 0.018 N). We found no effect of the Spring Pressure manipula-
tion given the small difference in spring pressure, only 4.11 times difference 
in magnitude. This is in-line with no observable effect of reported in Weindel 
et al. (2021a, 2021b) and guided our decision to build custom response boxes 
that would accommodate stiffer springs, thereby maximizing the size of the 
effect.
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considering the response. In this example, we can assume 
that the neural motor response signal would begin to 
initialize, and their finger may even begin to depress the 
response key. During this same time, the participant may 
recognize their “same” response is actually incorrect. 
Under the Stiff condition the button is more challeng-
ing to depress, allowing additional time to rebound and 
change the response to “different”. In the Soft condition, 
the button is far less challenging to depress and therefore, 
much less forgiving. This interpretation is congruent with 
earlier studies that demonstrated participants are able 
to detect and correct erroneous responses as they occur 
(Rabbitt & Vyas, 1981). Future research should use opti-
mized experimental design parameters to directly evalu-
ate this claim and estimate the individual level bias (z) 
DDM parameter. Another account whereby motor initia-
tion occurs prior to reaching the response threshold may 
also help explain this pattern of findings.

One assumption of the DDM is that the motor response 
is initiated only after reaching the decision boundary 
(Ratcliff & McKoon, 2008; Ratcliff & Tuerlinckx, 2002; 
White et al., 2010). Standing in contrast to this assump-
tion are studies decomposing “partial error” trials using 
EMG. The partial error finding is that incorrect response 
EMG activation (motor initiation) is followed by the cor-
rect response for a portion of trials (Burle et  al., 2002, 
2014; Coles et al., 1985). That is, the motor response may 
be initiated while the decision process is still ongoing 
(Weindel et al., 2021b). The pattern of EMG partial errors 
provides evidence against the motor response always 
commencing after the response threshold is reached with 
subthreshold motor events (EMG activity) evident dur-
ing the decision process. In the context of the current 
research, it is possible that the speed accuracy tradeoff 
for the Spring Pressure Condition was related to a partial 
error. The more challenging button press in the Stiff con-
dition (wider boundaries) may have provided an advan-
tage whereby adjustment of an incorrect motor initiation 
was easier to override and correct in contrast to the lower 
spring pressure in the Soft condition. In-line with the 
present speed accuracy trade-off under the motor speed 
manipulation, other corroboratory evidence demon-
strates a parallel finding to what we report here. That is, 
manipulating time pressure (i.e., manipulating the speed-
accuracy trade-off) causes changes in non-decision times 
and specifically, motor speed (Tr) (Spieser et  al., 2017; 
Steinemann et al., 2018; Weindel et al., 2021a). A future 
investigation incorporating EMG with a Spring Pressure 
manipulation similar to the current investigation will be 
informative for fully understand the change in bounda-
ries observed presently. Moreover, changes in boundary 
separation related to motor slowing and partial errors 
may have applied or clinical implications.

Applied and clinical implications
Interindividual heterogeneity within and across neuro-
logical diseases often results in differential rates of cog-
nitive and motor slowing. Two patients may score the 
same under traditional behavioral assessment approaches 
that use either response time or accuracy. Decomposing 
behavioral responses using the DDM may reveal that the 
processes that underlie the low scores differ for the two 
patients. One patient may have a lower drift rate which 
would corroborate a general pattern of cognitive slowing 
while the other patient may have a change in boundary 
separation. The second patients’ performance may be 
driven by a speed accuracy trade-off and difficulty over-
riding partial errors as a result of motor slowing. Other 
combinations, for example, larger non-decision time or 
an interaction of changes across multiple DDM param-
eters are also possible. When evaluated traditionally, 
the treatment for patient one may be inappropriate to 
apply to patient two, given the underlying causes (e.g., 
lower drift rates vs. wider boundaries) are very differ-
ent. Thus, there is strong prognostic potential for using 
the DDM clinically to decompose process-level cogni-
tive differences. In support of this, older adults are typi-
cally slower than young adults and this was interpreted 
early on as generalized slowing of information process-
ing speed (Myerson et al., 1992). In contrast to this expla-
nation, contextualizing aging differences under a DDM 
framework showed that older adults are slower because 
of wider boundary separation and larger non-decision 
time. Interestingly, older adults’ drift rates do not differ 
from younger adults, providing some evidence against 
the slowing of information processing speed explanation 
(Ratcliff et al., 2006, 2007, 2010). Understanding the root 
cause of person-specific and disease-specific cognitive 
changes becomes increasingly complex when comorbid 
conditions (e.g., depression, anxiety), disease modifying 
therapies, and/or medications that impact cognition are 
also factored in. Clinical application of the DDM may 
unveil novel precision treatment approaches for what are 
likely different clusters of disease-related cognitive dis-
ability profiles. We may find that those profiles are eas-
ily characterized under a DDM computational model 
framework.

The correlational analyses support the imprecise nature 
of traditional digit-symbol processing speed assess-
ments. Our findings show only small positive correla-
tions between the widely used symbol digit modalities 
test and the drift rate parameter. Assuming that the latent 
drift rate parameter is a relatively process pure measure 
of the rate of information processing, this finding sug-
gests that only a small proportion of the variance (aver-
age r2 = 0.08) measured by the symbol digit modalities 
test reflects a speeded component. Inasmuch as the drift 
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rate parameter is a measure of processing speed, this 
leaves a considerable amount of variance unaccounted 
for. The weak to moderate relationship corroborates 
other research demonstrating processing speed infer-
ences based exclusively on digit-symbol tests are largely 
invalid (Jaeger, 2018; Joy et  al., 2003; Mui et  al., 2022; 
Sandry et  al., 2021; Treviño et  al., 2021) and may more 
likely reflect multimodal integration (Sandry & Dobryak-
ova, 2021). Low specificity does not undermine the value 
associated with a highly sensitive and quick screener 
afforded by digit-symbol assessments. This does under-
score the importance of follow-up assessment with preci-
sion instruments (Sandry et al., 2021), of which, response 
time models may be one viable approach (Mui et  al., 
2022). What will be even more informative is widespread 
application of computational modelling approaches, 
including the DDM, to quantify disease-related cognitive 
changes (Evans & Wagenmakers, 2019; Forstmann et al., 
2016; Ratcliff et al., 2016; White et al., 2010; Wiecki et al., 
2015).

Unlike the moderate relationship between the symbol 
digit modalities test and the drift rate parameter, and in 
contrast to our expectations, we did not observe a reliable 
relationship between the nine-hole peg test and the non-
decision time parameter. This may be because the nine-
hole peg test is a wholistic measure of upper extremity 
function, finger dexterity and/or eye-hand coordination 
more so than it measures finger motor speed. Alternative 
measures of motor speed, for example, finger tapping, or 
EMG may reveal reliable correlations between measures 
of motor speed and the non-decision time parameter. In 
fact, despite no difference as a function of the between 
experiment response force manipulation, motor time 
measured with EMG is weakly correlated with non-deci-
sion time (Weindel et al., 2021a). Importantly, the partici-
pants in the present sample were healthy controls. It is 
reasonable that correlations in clinical samples, with less 
restricted ranges on the nine-hole peg test, may reveal 
more robust relationships.

One limitation of computing correlations between 
hierarchical Bayesian parameter estimates and behav-
ioral responses (e.g., symbol digit modalities test and 
nine-hole peg test) is that including hierarchical derived 
estimates may lead to systematic underestimation of the 
population correlation (Katahira, 2016; Ly et  al., 2017). 
As a result, the present correlational inferences should be 
considered with this in mind and treated with a degree of 
caution. While an important caveat to the correlational 
analysis, findings from one simulation study suggest that 
biased estimation may be less concerning with larger 
sample sizes (Katahira, 2016). In the present investigation 
our correlational inferences are based on sample data 
combined across both experiments. This large sample 

may offset biased estimation to some degree and this can 
be verified in follow-up research.

Conclusion
Across two experiments, we evaluated a main assump-
tion of the DDM. Specifically, we tested and found sup-
port for the hypothesis that differences in motor speed 
are not captured by the drift rate. That is, drift rate is 
experimentally independent from non-decision time, but 
non-decision time is not necessarily independent from 
manipulations that impact drift rate. The present findings 
provide critical empirical support that a computational 
modelling approach, the HDDM, has strong potential to 
serve as a precision measure of information processing 
speed in clinical populations who experience both cogni-
tive and motor slowing.

Acknowledgements
The authors thank Dr. Kyle Hardman for designing and building the response 
button boxes used in the current study along with Alexandra Buchanan, 
Zerbrina Valdespino-Hayden and members of the Cognition & Neurocognitive 
Disorders Research lab at Montclair State University for their assistance with 
participant testing and study administration.

Author contributions
JS study conceptualization, design, materials, acquisition of data and wrote 
first draft. JS and TR analyzed and interpreted data, contributed substantive 
revisions, read and approved the final manuscript.

Funding
This study was funded by a Pilot Research Grant from the Consortium of 
Multiple Sclerosis Centers to JS.

Availability of data and materials
Data for both experiments are available here: https://​osf.​io/​w9s4q.

Declarations

Ethics approval and consent to participate
All experimental procedures were approved by the Montclair State University 
Institutional Review Board (IRB-FY17-18-766). All participants provided 
informed consent.

Consent for publication
Not applicable.

Competing interests
The authors declare no competing interests.

Author details
1 Psychology Department, Montclair State University, 1 Normal Ave, Montclair, 
NJ 07043, USA. 2 Department of Psychology, University of South Dakota, 414 E. 
Clark Street, Vermillion, SD 57069, USA. 

Received: 6 May 2022   Accepted: 22 June 2022

References
Ando, T. (2007). Bayesian predictive information criterion for the evaluation 

of hierarchical Bayesian and empirical Bayes models. Biometrika, 94(2), 
443–458.

https://osf.io/w9s4q


Page 15 of 15Sandry and Ricker ﻿Cognitive Research: Principles and Implications            (2022) 7:66 	

Boehm, U., Annis, J., Frank, M. J., Hawkins, G. E., Heathcote, A., Kellen, D., Krypo-
tos, A.-M., Lerche, V., Logan, G. D., & Palmeri, T. J. (2018). Estimating across-
trial variability parameters of the diffusion decision model: Expert advice 
and recommendations. Journal of Mathematical Psychology, 87, 46–75.

Burle, B., Possamaï, C.-A., Vidal, F., Bonnet, M., & Hasbroucq, T. (2002). Executive 
control in the Simon effect: An electromyographic and distributional 
analysis. Psychological Research Psychologische Forschung, 66(4), 324–336.

Burle, B., Spieser, L., Servant, M., & Hasbroucq, T. (2014). Distributional reaction 
time properties in the Eriksen task: Marked differences or hidden similari-
ties with the Simon task? Psychonomic Bulletin & Review, 21(4), 1003–1010.

Coles, M. G., Gratton, G., Bashore, T. R., Eriksen, C. W., & Donchin, E. (1985). 
A psychophysiological investigation of the continuous flow model 
of human information processing. Journal of Experimental Psychology: 
Human Perception and Performance, 11(5), 529.

Evans, N. J., & Wagenmakers, E.-J. (2019). Theoretically meaningful models can 
answer clinically relevant questions. Brain, 142(5), 1172.

Forstmann, B. U., Ratcliff, R., & Wagenmakers, E.-J. (2016). Sequential sampling 
models in cognitive neuroscience: Advantages, applications, and exten-
sions. Annual Review of Psychology, 67, 641–666.

Gomez, P., Ratcliff, R., & Childers, R. (2015). Pointing, looking at, and pressing 
keys: A diffusion model account of response modality. Journal of Experi-
mental Psychology: Human Perception and Performance, 41(6), 1515.

Jaeger, J. (2018). Digit symbol substitution test: The case for sensitivity over 
specificity in neuropsychological testing. Journal of Clinical Psychophar-
macology, 38(5), 513.

Joy, S., Fein, D., & Kaplan, E. (2003). Decoding digit symbol: Speed, memory, 
and visual scanning. Assessment, 10(1), 56–65.

Katahira, K. (2016). How hierarchical models improve point estimates of model 
parameters at the individual level. Journal of Mathematical Psychology, 73, 
37–58.

Krueger, L. E. (1975). Familiarity effects in visual information processing. Psycho-
logical Bulletin, 82(6), 949.

Lerche, V., & Voss, A. (2019). Experimental validation of the diffusion model 
based on a slow response time paradigm. Psychological Research Psy-
chologische Forschung, 83(6), 1194–1209.

Ly, A., Boehm, U., Heathcote, A., Turner, B. M., Forstmann, B., Marsman, M., & 
Matzke, D. (2017). A flexible and efficient hierarchical Bayesian approach 
to the exploration of individual differences in cognitive-model-based 
neuroscience. In A. A. Moustafa (Ed.), Computational models of brain and 
behavior (p. 467). Wiley.

Mathiowetz, V., Weber, K., Kashman, N., & Volland, G. (1985). Adult norms for the 
nine hole peg test of finger dexterity. The Occupational Therapy Journal of 
Research, 5(1), 24–38.

Morey, R. D., & Rouder, J. N. (2015). BayesFactor (Version 0.9.10–2) [Computer 
Software].

Mui, M., Ruben, R., Ricker, T., Dobryakova, E., & Sandry, J. (2022). Ex-Gaussian 
analysis of simple response time as a measure of information processing 
speed and the relationship with brain morphometry in multiple sclerosis. 
Multiple Sclerosis and Related Disorders, 63, 103890.

Mulder, M. J., Keuken, M. C., van Maanen, L., Boekel, W., Forstmann, B. U., & 
Wagenmakers, E.-J. (2013). The speed and accuracy of perceptual deci-
sions in a random-tone pitch task. Attention, Perception, & Psychophysics, 
75(5), 1048–1058.

Myerson, J., Ferraro, F. R., Hale, S., & Lima, S. D. (1992). General slowing in 
semantic priming and word recognition. Psychology and Aging, 7(2), 257.

Rabbitt, P., & Vyas, S. (1981). Processing a display even after you make a 
response to it. How perceptual errors can be corrected. The Quarterly 
Journal of Experimental Psychology, 33(3), 223–239.

Ratcliff, R., & McKoon, G. (2008). The diffusion decision model: Theory and data 
for two-choice decision tasks. Neural Computation, 20(4), 873–922.

Ratcliff, R., Smith, P. L., Brown, S. D., & McKoon, G. (2016). Diffusion decision 
model: Current issues and history. Trends in Cognitive Sciences, 20(4), 
260–281.

Ratcliff, R., Thapar, A., & McKoon, G. (2006). Aging and individual differences in 
rapid two-choice decisions. Psychonomic Bulletin & Review, 13(4), 626–635.

Ratcliff, R., Thapar, A., & McKoon, G. (2007). Application of the diffusion model 
to two-choice tasks for adults 75–90 years old. Psychology and Aging, 
22(1), 56.

Ratcliff, R., Thapar, A., & McKoon, G. (2010). Individual differences, aging, and IQ 
in two-choice tasks. Cognitive Psychology, 60(3), 127–157.

Ratcliff, R., & Tuerlinckx, F. (2002). Estimating parameters of the diffusion model: 
Approaches to dealing with contaminant reaction times and parameter 
variability. Psychonomic Bulletin & Review, 9(3), 438–481.

Salthouse, T. A. (1993). Speed and knowledge as determinants of adult age 
differences in verbal tasks. Journal of Gerontology, 48(1), P29–P36.

Salthouse, T. A., & Babcock, R. L. (1991). Decomposing adult age differences in 
working memory. Developmental Psychology, 27(5), 763.

Sandry, J., & Dobryakova, E. (2021). Global hippocampal and selective thalamic 
nuclei atrophy differentiate chronic TBI from Non-TBI. Cortex, 145, 37–56. 
https://​doi.​org/​10.​1016/j.​cortex.​2021.​08.​011

Sandry, J., Simonet, D. V., Brandstadter, R., Krieger, S., Sand, I. K., Graney, R. A., 
Buchanan, A. V., Lall, S., & Sumowski, J. F. (2021). The symbol digit modali-
ties test (SDMT) is sensitive but non-specific in MS: Lexical access speed, 
memory, and information processing speed independently contribute to 
SDMT performance. Multiple Sclerosis and Related Disorders, 51, 102950.

Servant, M., Logan, G. D., Gajdos, T., & Evans, N. J. (2021). An integrated theory 
of deciding and acting. Journal of Experimental Psychology: General, 150, 
2435–2454.

Servant, M., White, C., Montagnini, A., & Burle, B. (2015). Using covert response 
activation to test latent assumptions of formal decision-making models 
in humans. Journal of Neuroscience, 35(28), 10371–10385.

Smith, A. (2002). Symbol digit modalities test: Manual. Western Psychological 
Corporation.

Spieser, L., Servant, M., Hasbroucq, T., & Burle, B. (2017). Beyond decision! Motor 
contribution to speed–accuracy trade-off in decision-making. Psycho-
nomic Bulletin & Review, 24(3), 950–956.

Steinemann, N. A., O’Connell, R. G., & Kelly, S. P. (2018). Decisions are expedited 
through multiple neural adjustments spanning the sensorimotor hierar-
chy. Nature Communications, 9(1), 1–13.

Treviño, M., Zhu, X., Lu, Y. Y., Scheuer, L. S., Passell, E., Huang, G. C., Germine, L. 
T., & Horowitz, T. S. (2021). How do we measure attention? Using factor 
analysis to establish construct validity of neuropsychological tests. Cogni-
tive Research: Principles and Implications, 6(1), 1–26.

Voss, A., Rothermund, K., & Voss, J. (2004). Interpreting the parameters of the 
diffusion model: An empirical validation. Memory & Cognition, 32(7), 
1206–1220.

Weindel, G., Anders, R., Alario, F. X., & Burle, B. (2021a). Assessing model-based 
inferences in decision making with single-trial response time decomposi-
tion. Journal of Experimental Psychology: General. https://​doi.​org/​10.​1037/​
xge00​01010

Weindel, G., Burle, B., Gajdos, T., & Alario, F.-X. (2021b). The decisive role of non-
decision time for interpreting the parameters of decision making models. 
PsychArxiv. https://​doi.​org/​10.​31234/​osf.​io/​gewb3

White, C. N., Ratcliff, R., Vasey, M. W., & McKoon, G. (2010). Using diffusion mod-
els to understand clinical disorders. Journal of Mathematical Psychology, 
54(1), 39–52.

Wiecki, T. V., Poland, J., & Frank, M. J. (2015). Model-based cognitive neurosci-
ence approaches to computational psychiatry: Clustering and classifica-
tion. Clinical Psychological Science, 3(3), 378–399.

Wiecki, T. V., Sofer, I., & Frank, M. J. (2013). HDDM: Hierarchical Bayesian estima-
tion of the drift-diffusion model in Python. Frontiers in Neuroinformatics, 
7, 14.

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in pub-
lished maps and institutional affiliations.

https://doi.org/10.1016/j.cortex.2021.08.011
https://doi.org/10.1037/xge0001010
https://doi.org/10.1037/xge0001010
https://doi.org/10.31234/osf.io/gewb3

	Motor speed does not impact the drift rate: a computational HDDM approach to differentiate cognitive and motor speed
	Abstract 
	Significance statement
	Introduction
	Clinical potential and limitations of the DDM
	DDM and motoric processes

	Present experiments
	Modelling hypothesis

	Method
	Participants
	Assessments
	Oral and written symbol digit modalities test
	Nine-hole peg test

	Design
	Materials and apparatus
	Procedures
	Data preprocessing and exclusionary criteria
	Data analysis
	Behavioral accuracy and response time
	Hierarchical drift diffusion model parameter estimation
	Model selection
	Correlations


	Results and discussion
	Experiment 1: letter comparison
	Accuracy
	Response time
	HDDM model comparison


	Discussion
	Experiment 2: pattern comparison
	Accuracy
	Response time
	HDDM model comparison


	Discussion
	Across experiment correlational analyses
	Intercorrelation across HDDM parameter estimates
	HDDM X supplemental assessments


	General discussion
	Set size effects on DDM parameter estimates
	Motor speed effects on DDM parameter estimates
	Applied and clinical implications

	Conclusion
	Acknowledgements
	References


