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Abstract

Humans can extract considerable information from scenes, even when these are presented extremely quickly.

The ability of an experienced radiologist to rapidly detect an abnormality on a mammogram may build upon this
general capacity. Although radiologists have been shown to be able to detect an abnormality ‘above chance’ at short
durations, the extent to which abnormalities can be localised at brief presentations is less clear. Extending previous
work, we presented radiologists with unilateral mammograms, 50% containing a mass, for 250 or 1000 ms. As the
female breast varies with respect to the level of normal fibroglandular tissue, the images were categorised into high
and low density (50% of each), resulting in difficult and easy searches, respectively. Participants were asked to decide
whether there was an abnormality (detection) and then to locate the mass on a blank outline of the mammogram
(localisation). We found both detection and localisation information for all conditions. Although there may be a
dissociation between detection and localisation on a small proportion of trials, we find a number of factors that lead
to the underestimation of localisation including stimulus variability, response imprecision and participant guesses.
We emphasise the importance of taking these factors into account when interpreting results. The effect of density
on detection and localisation highlights the importance of considering breast density in medical screening.
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Significance

In medical imaging, a radiologist searches and interprets a
medical image to make critical diagnostic decisions (e.g. is
that a cancer or not?), often under time pressure. With
time and practice, experienced radiologists are thought to
develop skills that allow them to form the basis of a diag-
nosis (normal or abnormal) during an initial glance at an
image. This implies that the information extracted from
the image in the first second of processing contains critical
information that informs diagnosis. Here, we explore what
type of information is present in this timeframe, particu-
larly focusing on the presence (or lack thereof) of infor-
mation about the location of potential abnormalities. We
develop an image-level analysis of errors, which shows
coarse location information exists in many apparently
‘incorrect’ location responses. Finally, we assess whether
trials which imply detection of a target without
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localisation could be due to guessing. We demonstrate
that for breast masses there is information that sup-
ports both detection and localisation of abnormalities,
with better performance in images with low relative to
high breast density. Our findings emphasise the need
for breast density to be considered in screening reports
and radiologist training. Notification for the patient and
clinician about breast density and potential cancer risk
may have a significant positive effect on outcomes, such
as the provision of more suitable imaging modalities,
and an earlier cancer diagnosis.

Background

As soon as we open our eyes, our visual system pro-
cesses an enormous amount of information in a short
space of time. Early findings showed that an exposure of
100 ms is sufficient to extract the basic meaning of nat-
ural scenes (e.g. indoor vs outdoor; Potter, 1976). Using
backward masking to precisely control for exposure
times, others have shown that the distinction between
natural scene categories at the superordinate level (e.g.
manmade vs natural) and basic level (e.g. coast vs city)
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can occur with presentation durations as short as 20 ms
(Greene & Oliva, 2009; Joubert, Rousselet, Fize, &
Fabre-Thorpe, 2007). Furthermore, when primed with a
category (e.g. animal or truck), objects can be detected
at brief durations (Thorpe, Fize, & Marlot, 1996; Van-
Rullen & Thorpe, 2001). This fast visual processing has
also been reported among those who are experienced in
domain-specific tasks such as medical imaging (Evans,
Georgian-Smith, Tambouret, Birdwell, & Wolfe, 2013;
Evans, Haygood, Cooper, Culpan, & Wolfe, 2016; Kundel
& Nodine, 1975; Nodine et al., 1999). Kundel and
Nodine (1975) showed that when presented with a
chest radiograph for 200 ms, radiologists could detect
an abnormality with 70% accuracy. Kundel, Nodine,
Krupinski, and Mello-Thoms (2008) have since shown
that within 1 s of viewing a mammogram, experts fixate
on 67% of breast cancers (Kundel et al., 2008). Further-
more, when shown briefly presented mammographic
displays (250 ms), radiologists can discriminate normal
from abnormal at levels better than guessing (Evans
et al.,, 2013, 2016). The evidence that observers can ex-
tract information with fast presentations from natural
scenes (e.g. Potter, 1976; VanRullen & Thorpe, 2001) and
medical images (e.g. Evans et al., 2013; Kundel & Nodine,
1975) suggests that the processing involved in early vis-
ual search is similar whether the display is a natural
scene or a medical image, at least for experts.
Radiologists develop expertise in ‘visual search’ in such
images over a period of years. It has been suggested that
specialised training and ongoing experience leads to per-
ceptual and cognitive ‘fine-tuning’ in the task of image
interpretation (Nodine & Mello-Thoms, 2010). Main-
taining such expertise requires interpreting high vol-
umes of cases. For example, mammographic screening
radiologists interpret more than 2000 cases per year
(Rawashdeh et al., 2013). It is possible that expertise
can be attributed to implicit learning and many hours
of training and practice has allowed for the efficient
guidance of attention to relevant regions in an image
(Drew, Evans, V0, Jacobson, & Wolfe, 2013). There is
evidence that this extensive experience modulates the
perceptual/cognitive system of experts: experienced ra-
diologists outperform novices and trainee radiologists
on tasks such as detecting an abnormality in brief im-
ages (Evans et al.,, 2013; Nodine et al., 1999), and in dif-
ferent patterns of eye movements between experts and
novices. For example, Kundel and La Follette Jr (1972)
compared the visual scan patterns of expert breast radiol-
ogists with trainees interpreting mammograms and found
that the experts fixated on lesions faster and concluded
search earlier than the novices. Others have shown that
experts fixate true abnormalities within 1-2 s of image on-
set and most of their subsequent scanning is to confirm
that there are no other lesions (Mello-Thoms et al., 2005).
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This follow-up takes about 5-10 s after initial fixation,
after which a diagnostic decision is reached. There is an
enormous amount of information that is processed in the
first second of viewing a scene or image, so it is important
that we understand the cognitive underpinnings of early
visual search.

Kundel and Nodine (1975) developed a model that de-
scribes two distinct processes leading to a diagnostic de-
cision. The first glance supports a global, or holistic,
overview of the image, which indicates on a basic level
whether the image deviates from a cognitive representa-
tion of a normal anatomical schema. The information
extracted at this first stage is then proposed to constrain
and guide search to the region of the image containing
the abnormality (the second stage). For this to occur, the
global signal must be informative about the location of
the abnormality.

Recently, an alternative perspective has been offered
by Evans et al. (2013, 2016). They suggest an initial ab-
normal signal could act to alert a radiologist that some-
thing is abnormal but without containing location
information. Rather than guiding search to a location,
this global signal then changes the search strategy to a
more complete search for the abnormality. The initial
signal could be supported by the rapid extraction of the
summary statistics of the image, such as average orienta-
tion and size. In the basic vision literature, two stage
models (e.g. Wolfe, V5, Evans, & Greene, 2011) describe
an initial, non-selective pathway which, although limited
in capacity, extracts summary statistics in parallel from
the display. In the model, global processing occurs along
this pathway. A second, selective pathway recognises
one or a few objects at a time and requires selective at-
tention. Together these pathways combine to support
perception. Evans et al. (2013, 2016) suggest that infor-
mation via the non-selective pathway could alert a radi-
ologist that something is abnormal, but the fine-grained
detail, such as its location, only becomes available at the
later selective stage.

Evans et al. (2013) compared the performance of radi-
ologists and novices on the detection and localisation of
abnormalities in mammograms. The stimuli were bilat-
eral (left and right breast) mammograms where one side
could contain subtle masses and architectural distortions
that varied in size (10—-48 mm). Such pathologies are
highly variable and are difficult to detect and locate even
by expert radiologists under free-viewing conditions. As
a result, these have the highest reported rate of false
negatives (Knutzen & Gisvold, 1993). Despite these diffi-
cult images, Evans et al. (2013) found that radiologists
(but not novices) could detect an abnormality above
chance (Mean d” was ~ 0.7 for 250 ms duration and up
to ~1 for 2000 ms duration, where d’ of 0 is chance).
For the combined detection and localisation task, images
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were displayed for 500 ms. Following detection, the radi-
ologists viewed a blank outline of the mammogram and
were asked to localise by marking the abnormality with
a mouse-click. Chance was determined by calculating
the average percentage (across images) of overall tissue
area lying within a predetermined region of abnormality.
Although abnormalities could be detected by radiologists
above chance at 500 ms, localisation performance was at
chance. Evans et al. (2013) interpreted these results as
evidence that the information extracted to support de-
tection at brief durations does not contain location in-
formation but is rather based on an overall ‘gist’ or
holistic signal. In a subsequent paper, Evans et al. (2016)
did another series of experiments using mammograms,
replicating and extending their initial findings. In their
second experiment, they presented radiologists a set of
120 single-sided (one breast) mammograms for 500 ms
and asked them to detect and then localise an abnor-
mality. The unilateral mammograms either contained
an abnormality (target-present), had no abnormality
(target-absent), or was the contralateral breast from the
target-present mammogram (no abnormality). In this
experiment, mean d’ for detection was 1.16 for the
target-present/target-absent images, significantly above
chance (0), whereas localisation accuracy was not sig-
nificantly greater than that expected by chance (6%).
They concluded that the radiologists could not localise
a lesion despite detecting it. Further, they suggested
that experienced radiologists could even make such
judgements based on images from the contralateral
(thus far normal) breast (remaining 40 images). Mean d
“was 0.59 for detection of abnormality in the contralat-
eral breast from a woman with signs of cancer in the
other breast. This result is striking because the mam-
mogram on which the judgement was based had no
mass. These results provide intriguing hints that the in-
formation required for detection and that for localisa-
tion could be dissociable.

Evans et al. (2013, 2016) interpret their results as
reflecting a global signal of abnormality that lacks infor-
mation about the location of a specific mass. Indeed, the
remarkable findings that a diagnosis could be made from
the contralateral apparently normal breast when the op-
posite side was abnormal might be explained by this in-
terpretation. There are, however, some alternative
interpretations that need to be carefully considered and
ruled out. First, to interpret a null effect as evidence for
there being no effect (in this case no localisation), would
need alternate statistics, such as a Bayes Factor (Dienes,
2011), to assess the degree of evidence for ‘no effect’
Second, the summary statistics (e.g. average d prime)
could be inadequate to answer the key questions. For ex-
ample, if participants click slightly outside the lesion,
this would be categorised as incorrect, which would lead
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to the erroneous inference that there was no localisation
information, whereas an analysis of the apparent error
would clearly show localisation information. We also
need to ensure that the abnormal images do not include
‘distracting’ features that could potentially be the basis
of an apparently correct ‘abnormal’ response. Finally, in
a detection experiment there will always be some ‘lucky
guesses’ that are correct.

We need to consider the impact of these on the appar-
ent dissociation between detection and localisation. The
two studies by Evans et al. (2013, 2016) raise important
questions, but the challenge to the Kundel and Nodine
(1975) model of radiologists’” diagnostic decision-making
rests heavily on the lack of information about the loca-
tion of an abnormality. Here, we go beyond the sum-
mary statistics and explore image level variability,
precision of localisation responses and the potential in-
fluence of guesses to test whether detection is possible
without localisation.

The aims of the present study were to extend previous
work by Evans et al. (2013, 2016) and explore in detail
whether detection and localisation are dissociable. The
claim that radiologists can detect the presence of an ab-
normality without knowing where it is has strong theoret-
ical implications. Instead of the intuitive notion that the
information in the first glance guides attention and the
eyes towards the location of the potential abnormality, it
implies a quite different process. Here, our first aim was
to see whether expert readers of mammograms viewing
brief displays can extract location information when a
mass is either obvious or subtle. Female breast tissue is
highly variable in mammographic breast density (MBD; Li
et al.,, 2013), which provides us with a natural variant for
manipulating the salience of a mass. In the human popula-
tion, 40% of women aged 40-74 years have dense breasts
(Sprague et al., 2014). Critically, as MBD increases there is
a four- to sixfold increased risk of breast cancer (Boyd
et al, 2010) and studies have shown that higher levels of
MBD reduce radiologist sensitivity, thus limiting early de-
tection of breast cancer (Al Mousa, Ryan, Mello-Thoms,
& Brennan, 2014). For a radiologist, MBD increases the
complexity of the image and could mask and/or distract
from existing pathology. Our second aim was to explore
the effect of breast density (which can make masses more
difficult to see) on the type of information that can be ex-
tracted in a brief display. Finally, the distinction between
theories rests heavily on the dissociation between detec-
tion and localisation of masses. Our third aim was there-
fore to develop methods that can test for evidence of this
dissociation. To this end, we looked at the images in detail
to explore the degree and source of localisation errors on
apparent detection-correct trials, as well as considering
the potential influence of ‘Tucky’ guesses to ‘detection
without localisation’ performance.
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We investigate detection and localisation performance
for a single mass in unilateral mammograms presented
centrally for a brief duration and then masked. There is
evidence of a bias to click directly in front of fixation
(centre of the image) when the location is unknown
(Buswell, 1935; Tatler, 2007). However, the mass location
varied within the breast in our images, which minimises
the influence of any such bias (i.e. a random central click
is not likely to fall within the mass location). We pre-
sented two sets of mammograms that varied on density
(high density and low density) and mass presence. As half
of the images contained a mass that would be difficult to
detect, we used two durations (unique images in each):
250 ms (within the timeframe others have considered to
support gist-level information in medical images; Evans
et al. (2013)) and 1000 ms (presumably well beyond gist
level of perception). The participants performed a detec-
tion and an ‘exact click’ localisation task similar to Evans
et al. (2013). We had two conditions for our target-
present stimuli, each containing a single mass: a difficult
condition (50%) in which the mass was subtle due to level
of breast density and an easy condition (50%) in which the
mass was obvious. The difficult condition is comparable
to those of Evans et al. (2013, 2016). We predict that mass
detection and localisation will be more accurate for mam-
mograms with low density compared with those with high
density at both experimental durations. We consider
image variability, response imprecision and we use alter-
native analyses and a guessing correction to fully test for a
dissociation between knowing an abnormality is present
vs knowing where it is.

Methods

Participants

Twelve participants with experience in interpreting
mammograms were recruited from BreastScreen New
South Wales and local radiology practices (6 female,
average age =54 years, SD =13 years). We defined ex-
perts as having at least four years of experience and in
their current practice reading at least 2000 mammo-
graphic cases per year (Rawashdeh et al., 2013). The
BreastScreen doctors (n=11) read >3000 mammo-
graphic cases per year, but we did also include one
breast physician who reads > 1000 cases per year, as she
had extensive experience (ten years). The average experi-
ence reading mammograms of our participants was 22
years (SD =13 vyears). All gave informed consent and
reported normal or corrected-to-normal vision. The
study was approved by the Macquarie University Human
Research Ethics Committee (Medical Sciences).

Design, stimuli and apparatus
We used a Density (low, high) x Duration (250, 1000
ms) within-subjects design.
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The stimuli were 160 full-field, de-identified, medio-
lateral oblique digital breast mammograms obtained
from the Dokuz Eylul Mammography Set (DEMS; Bulu,
Alpkocak, & Balci, 2013), which varied on target pres-
ence/absence and high MBD/low MBD. Half the images
(80) were normal and half contained a single mass previ-
ously diagnosed and coded according to the Breast
Imaging and Reporting Data System (BIRADS; American
College of Radiology: Breast Imaging Reporting and Data
System Atlas. Reston, VA: © American College of
Radiology, 2013). BIRADS is a standardised breast
assessment tool developed for mammography that
ranges from 0 to 6. In clinical practice, a radiologist
assigns a BIRADS score to each image, which deter-
mines the next step in the diagnostic protocol. The 80
normal images had a previously assigned BIRADS code
of 1 (no significant abnormality). The abnormal breast
images consisted of BIRADS coded 2 (benign), 3
(probably benign), 4 (suspicious abnormality and biopsy
recommended), 5 (highly suggestive of malignancy) and
6 (known pathological proven malignancy). The average
size of the mass was 26.70 mm (SD = 13.23 mm) and the
range was 8—54 mm. The mean distance from the centre
of the screen to the mass border was 2.5° of visual angle
(SD =2°, range 0-8°). (Note: fixation was not controlled
during the trial).

From this set, ten images were ‘cleaned’ using Graphic-
Converter (version 9.4). Image artefacts such as side
markers and occasional dust speckles outside of the
breast and large calcifications within the tissue were re-
moved. One of the most challenging aspects of studying
radiologists and using medical images rather than using
artificial stimuli is that the human body varies widely
anatomically. Stimuli were selected that contained only a
single mass (so those with a second lesion were ex-
cluded). Difficulty was manipulated by including two
sets of mammograms (dense: high MBD; fatty: low
MBD) where half of the mass images (40) and half of the
normal images (40) had high MBD. The remaining im-
ages had low MBD (see Fig. 1). Density was categorised
on a dichotomous scale (low/high) by an experienced
radiologist blind to the purpose of the study (M.B.) and
one author with experience reading mammographic im-
ages (A.C.). These ratings were significantly correlated
(r=0.9, p<0.0001).

The experiment was presented on a Macintosh
MacBook Pro using MATLAB 2011B with the Psycho-
physics Toolbox Version 3 (Brainard, 1997; Pelli, 1997).
The stimuli were centred on a 1920 x 1080 resolution 24-
in, LG W2442PA, liquid-crystal display screen, refresh
rate of 120 Hz. The participants sat approximately 70 cm
away from the screen. The original resolution of the single
mammograms was 4096 x 3328 or 3328 x 2560 pixels,
which were downsized to 19° x 24° (18 out of 160) or
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b High Density

a Low Density

Fig. 1 Exemplars of target-present images. The red outline depicts
the mass (and did not appear in the actual stimuli). a Low-density
breast that contains predominately fatty tissue, which is radio-
translucent or black/grey. The higher contrast mass is easily seen.

b High-density breast that contains normal fibroglandular tissue
resulting in a more difficult search. The X-ray beam is attenuated by
this tissue and appears radio-opaque or white on a mammogram

20° x 24° of visual angle. To validate our image categories
and presentation durations, pilot data were collected from
three radiologists at 250 ms and 500 ms durations two
months before their participation in the experimental ses-
sion. Previous studies which have used medical images
have reported that a time-lapse of around two months
between each session reduces the likelihood of recall
(Berbaum et al., 2015). On the basis of these pilot data, we
increased the long duration condition to 1000 ms.

Procedure

The experiment was conducted onsite at various metro-
politan Sydney BreastScreen and radiology practice lo-
cations. We presented the stimuli at two presentation
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durations (250 ms, 1000 ms) in separate blocks, coun-
terbalanced in order across participants. For each
participant, the particular image presented in each dur-
ation was randomly selected without replacement. After
four practice trials at 2000 ms with feedback and a fur-
ther six trials at the experimental durations (three at
250 ms, three at 1000 ms; blocked) with feedback, the
radiologists viewed 160 trials without feedback. The
radiologists were asked to detect ‘any mass that you
would recommend for further investigation’. Each trial
began with a fixation point for 500 ms, followed by a
centrally presented left medio-lateral oblique breast
image. This was followed by a backward 1/f noise mask
for 250 ms after each stimulus presentation and a black
screen asking the radiologists to categorise the mam-
mogram using a key press as either ‘normal’ (left arrow
key) or ‘mass’ (right arrow key), followed by a black
screen with a grey mask of the breast (each unique
mammogram was paired with its corresponding mask).
The radiologists were asked to ‘please click with the
mouse the exact location where you saw a mass’. In the
case of normal responses, they were asked to click any-
where on the display. There were 20 trials per condi-
tion (duration/target presence/density). Figure 2 shows
the trial sequence. Participants began the next trial with
a key press.

Analysis

Following the recommendations of Cumming (2012),
we present Mean differences (Mgig) with 95% confi-
dence intervals (CI), as well as a Cohen’s d estimate of
effect size corrected for small sample size, to assist in
accurate interpretation of the effects. This latter meas-
ure, d,,;,, represents an adjusted, unbiased Cohen’s d
standardised effect size applied to single sample t-tests
where d,,,,, = (1 - 3/ (4*df - 1)) * d (Cumming, 2012).

Fixation 500ms

indicate the location of the mass if present

Mask 250ms

Single Mammogram: Density (low, high) randomised
Duration (250ms or 1000ms) blocked,
counterbalanced

Fig. 2 Example trial for 12 radiologists who were asked first whether the image was normal or contained a mass, and then to use the mouse to

Localise with a
mouse click

Detection: Normal or mass?
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Results

The aims of the experiment were to see whether expert
readers of mammograms viewing brief displays: (1) can
extract location information; (2) are affected by breast
density in the type of information that can be extracted;
and (3) show a dissociation between detection and
localisation.

Detection accuracy

First, we calculated accuracy for target present and tar-
get absent trials to test whether the radiologists could
detect a mass at these durations. Figure 3 shows per-
formance on the detection task presented as accuracy
for target present and absent trials separately (Fig. 3a
and b) and sensitivity (Fig. 3c). Figure 3a shows better
performance for the low-density images (more obvious
masses) than the high-density images (where the masses
are more difficult to find even in free-viewing). Accuracy
also improves with duration. Figure 3b shows accuracy
for the target absent trials. The radiologists appeared less
accurate on target absent trials at the longer duration,
showing they tended to make false alarms when given
slightly more time to inspect the display.

D prime was calculated as a function of abnormality
present or absent. Higher d" indicates greater sensitivity:
the higher the d’, the more accurately the radiologists
responded to both target present and target absent trials
(i.e. reported a mass when a mass was present and no
mass when no mass was present). A d’ of zero indicates
there is no sensitivity and the participant is performing
at chance (i.e. no better than guessing).

Figure 3c presents the d’ data. Single sample t-tests
(Bonferonni adjusted, alpha = 0.0125) on average d " rela-
tive to 0 (chance) for each duration and density showed
that radiologists do have information about the presence
of the mass at both durations. Performance at 250 ms
for the low-density condition was greater than chance
(¢(11) =14.97, p<0.0001, Mg =2.39, 95% CI=2.03-2.
74, d,,. = 5.69) as was performance in the more difficult
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high-density images (¢(11) =3.3, p <0.007, Mgy = 0.44,
95% CI=0.15-0.74, d,,; =1.3). As one might expect,
this was also the case at the longer duration of 1000 ms,
both for low-density images (£(11) =13.38, p<0.0001,
Mg = 2.31, 95% CI=1.93-2.69, d,,,;, =5.09) and high-
density images (£(11) =5.04, p <0.0001, My = .82, 95%
Cl=046-1.17, d,; =1.92). Although high-density d’
values reflect poorer performance than seen in free-
viewing, where radiologists have d” values around 2.5-3.
0 (D’Orsi et al., 2013), performance already approaches
these levels for the low-density images, even at 250 ms
(see Fig. 3c). These results suggest that when the mass is
relatively easy to see (low density), d” in the first quarter
of a second is already close to that of free-viewing.

As one would expect, we can see from Fig. 3c that per-
formance for the low-density images is better than the
high-density images. This obvious pattern was confirmed
by a repeated measures ANOVA with the factors of
Density (low, high) x Duration (250, 1000) on the mean
d’ values. This showed a main effect of Density (F(1,
11)=133.51, p<0.0001, #°,=0.92), no effect of
Duration, (F(1, 11) =0.98, p =0.344) and no Density x
Duration interaction (F(1, 11) = 2.09, p = 0.18).}

Localisation accuracy

Our key questions were: first, whether there is localisa-
tion information when detection is correct; and, second,
how breast density influences localisation. Using the
same method as Evans et al. (2013, 2016, Experiment 2),
we compared the location of the mouse click with the
location of the actual mass and coded the response as ei-
ther accurate (participant clicked on or within the
boundaries of the mass) or not (any other location). We
analysed trials where the participants were correct on
detecting an abnormality at each exposure duration (i.e.
correct detection target-present trials). We compared lo-
calisation performance to chance, calculated across the
80 target-present images as 4.4% (95% CI=3.02-5.75).
This is the proportion of breast tissue that contains the

a Target Present b  Target Absent c D prime
e Low density
100 100 3.0 - High density
80 1/4 80 g:i < 251 H
k3] 3] S 204
© 604 2 60+ =
3 Q 2 157
O 40- Q 404 8 10-
2 & y
20 - 20 4 0O 0.5+
0.0 = eecercesercocacacietacestcacacnciecacacnccacees Chance
0 T T 0 T T T T
250 1000 250 1000 250 1000
Duration (ms) Duration (ms) Duration (ms)
Fig. 3 Detection performance. a Average percentage correct on target present trials. b Average percentage correct on target absent trials.
c Average d' on the detection task. Error bars represent 95% confidence intervals
J
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mass relative to the proportion of total tissue; thus, it
represents the average number of possible random loca-
tions radiologists could select, taking into account the
lesion and image size across all of the target-present im-
ages. Figure 4a shows the percentage of trials when the
radiologists responded correctly on localisation task,
when detection was correct, for low density (blue line)
and high density (black line) at the two durations, com-
pared with chance. Single sample t-tests (Bonferroni ad-
justed, alpha=0.0125) showed that radiologists’
localisation accuracy was significantly above chance (4.
4%) for 250 ms presentations of low-density images
(#11) =12.9, p<0.0001, Mg =30.18, 95% CI=25.03—
3533, d,p,=4.9) as well as for high-density images
(#(11) = 3.74, p = 0.003, My = 6.43, 95% CI = 2.64—10.22,
dp = 1.42). The same pattern was evident at the longer
duration of 1000 ms for low (#(11)=13.9, p <0.0001,
Mg = 50.6, 95% CI = 42.59-58.61, d,,,,;, = 5.28) and high
(#(11) =10.41, p<0.0001, My =19.35, 95% CI=15.26—
23.44, d,,,.; = 3.95) density images.

To investigate the effect of density on localisation
(Fig. 4a), we conducted a repeated measures ANOVA
with the factors of Density (low, high) x Duration (250,
1000) on the mean percentage localisation correct
values from the correct detection target-present trials.
Again in line with expectations, this showed a main
effect of Density, with better localisation accuracy in
the low- than high-density conditions (F(1, 11)=114.
07, p<0.0001, 172p:0.91), a main effect for Duration,
with better localisation accuracy at 1000 ms than 250
ms (F(1,11) =53.01, p<0.0001, ;72p =0.83), and no
Density x Duration interaction (F(1,11)=2.17, p=0.
17). These analyses show that radiologists were
statistically above chance in localising the target on
trials where they successfully detected a mass. However,
as localisation performance is far from perfect, we have
some trials on which detection apparently occurred
without localisation information being available. This
could reflect a global signal as suggested in the
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investigate this possibility thoroughly, we conducted
several follow-up analyses.

Before concluding one has evidence of ‘detection with-
out localisation; there are some important alternatives to
be considered. First, we would like to note that before
concluding anything from a null localisation effect, we
need to use statistics that can assess the evidence for no
effect (no localisation when there is detection) rather
than just no evidence. Frequentist statistics do not allow
for the interpretation of null effects — a p value greater
than alpha merely informs us that we do not have evi-
dence to reject the null hypothesis. To see whether there
is evidence for the null hypothesis of no localisation in-
formation, we could instead calculate a Bayes Factor
(BF). In line with Jeffreys (1961), a BF < 0.3 indicates that
the data support the null rather than the alternative hy-
pothesis, a BF ~ 1 indicates maximal insensitivity of the
experimental evidence, whereas a BF >1 indicates the
data support the alternative hypothesis (BF >3 suggests
evidence for the alternative) (Dienes, 2011). In our case,
we do not have a null effect in any condition, but we
can still calculate a Bayes equivalent of a single sample
t-test compared to chance (4.4%) to illustrate the point:
if we test just the difficult images that are comparable to
those of Evans et al. (2013, 2016), we can see strong evi-
dence for the alternative hypothesis that localisation in-
formation exists: for the high-density condition at 250
ms, the BF(12) = 14.73 and at the longer duration, 1000
ms, BF(12) =31,052.09. Consistent with our frequentist
statistics results, we conclude that the radiologists are
localising targets better than chance in the high dense
conditions.

Our second consideration is whether summary level
statistics such as overall accuracy or sensitivity are ad-
equate to address the ‘detection without localisation’
question. In fact, one cannot be sure of ‘detection with-
out localisation” without examining the error trials care-
fully. A null localisation effect could, for example, be
due to less precision in the localisation task than the de-

previous literature (Evans et al, 2013) and to tection task due to the additional requirements rather
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Fig. 4 Detection and localisation results. a Average percentage correct on the localisation task for trials when detection was correct; b Average
percentage correct on the localisation task when a region of acceptance (ROA) around the lesion is included. Chance is 4.4% and adjusted to
9.1% when including the ROA (dotted line) with 95% confidence intervals. Error bars represent 95% confidence intervals
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than a true lack of localisation information. This could
include decay in the visual short-term memory trace
over time or motor error in clicking the precise location. If
such factors influence the precision of the localisation re-
sponses, we should see localisation errors that nonetheless
cluster around the correct region. Our radiologists were
scored correct on localisation if the mouse-click occurred
within or on the boundaries of the lesion, consistent with
Evans et al. (2016) (Evans, personal communication,
2017). However, when we look at the incorrect localisation
responses, we see that this does not accurately reflect the
degree of localisation information. For example, in Fig. 5a,
many of the ‘incorrect’ responses suggest the participant
had some information about location.

There is also inherent variability in real-world stimuli.
Although we carefully selected images with only one
true mass and removed obvious image artefacts (e.g.
dust), the images have naturally occurring variations in
breast tissue. We need to examine the responses at an
image level to assess whether such variance may have
contributed to trials of apparent successful detection
without accurate localisation. Figure 5b shows clearly an
image where natural variability has contributed to three
incorrect responses to a distractor in the breast (pre-
sumably in these cases, the radiologists were responding
‘abnormality present’ to this distractor, rather than the
actual mass). The responses on these images suggest that
apparent ‘detection without localisation’ can reflect
coarse or less precise localisation, rather than no local-
isation, warranting image-level investigation.

a Low Density b

High Density

Fig. 5 Exemplars from the target present stimuli set illustrating the
mass (red outline, not shown in the experiment) and localisation
responses of the 12 radiologists (blue) collapsed across duration.

a Low-density image showing precision errors. The blue mouse-clicks
for localisation show that the eight radiologists who were ‘incorrect’
on this image may have information about the location of the target.
b High-density image showing the effect of a naturally occurring
distractor. Three radiologists localised the distractor as the abnormality
(note a further four ‘incorrect’ responses are near the mass (red outline)
but imprecise)
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To quantify the degree to which such examples might
influence our results, we conducted a post-hoc image
analysis collapsed across participants for each duration.
We calculated the distance between the response click
and the mass (i.e. the degree of incorrect localisation). In
academic radiology, a region of acceptance (ROA) for le-
sion localisation is determined by taking into account
the size of the largest lesion (e.g. Haygood et al., 2014).
Following this convention, we measured the radius of
the largest mass in the image set (27 mm) and added
this value to the boundary values for all the target
present images. Using this method, localisation is scored
correct when a radiologist clicks within this ROA, allow-
ing for a margin of response imprecision and reducing
the ‘tightness’ of acceptance. We further examined the
trials that were still incorrect to quantify the distance
from the lesion boundary.

Figure 6 shows image level analysis for the localisation
data on incorrect trials plotted as a function of distance
(in pixels) from the closest boundary of the mass, col-
lapsed across radiologists (Fig. 6a: 250 ms; Fig. 6b: 1000
ms). Trials on which the detection response was incor-
rect are not included (250 ms: high density n =12, low
density n = 1; 1000 ms: high density n = 8; low density n
=0). Correct responses for localisation (when detection
correct) would appear on the baseline and are also not
included in the figure (250 ms: high density n =3, low
density n = 8; 1000 ms: high density n = 8; low density n
= 8). The dashed red line represents the ROA plotted at
29 pixels. Figure 6 shows a considerable proportion of
the clicks lie within this decision boundary and high-
lights how the variability within each image affected ac-
curacy due to factors such as mass size and distractors.

Localisation accuracy including a ROA
We calculated percent correct for localisation trials with
an ROA included in assessing localisation for target-
present trials with correct detection responses. Figure 4b
shows the percentage of trials in which ROA localisation
was correct for low-density (blue line) and high-density
(black line) images across both durations, compared
with chance. ROA chance was calculated as 9.1%, ad-
justed to account for the increased proportion of tissue
included in the ROA. The summary-level measures
clearly indicate better accuracy for all conditions com-
pared with the non-ROA data (Fig. 4a), especially for the
250 ms high-density condition (ROA Mean =20.42%;
non-ROA Mean = 10.83%), suggesting that the Evans
et al. (2013, 2016) method for calculating localisation
may not adequately capture the degree to which location
information is present.

This post-hoc analysis highlights the variability and
challenges which exist when using real-world stimuli
and the importance of carefully examining the data from
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Fig. 6 Localisation errors showing the distance between the localisation response and the mass for each image (detection correct target-present
trials only). a 250 ms duration; b 1000 ms duration. The x-axis represents the images (divided by high and low density. Note: the image numbers
are arbitrary for the purpose of the graph only). A correct score on localisation would score 0 (excluded from the figure). The y-axis is the distance
(in pixels) from the mass border. The dashed red line represents the region of acceptance (ROA). Red numbers are data points in response to
images with unusual characteristics: 25 (250 ms) is the high-density image presented in Fig. 5b showing the mouse-clicks on a distractor. 34 is a
low-density image which contained a prominent lymph node in the axillary tail of the breast which appears to have captured four radiologists’
attention; 25 (1000 ms) is a low-density image containing a small mass and 43 is the low-density image presented in Fig. 5a showing the cluster

of mouse-clicks near the correct location

individual images rather than stopping at summary sta-
tistics. These findings suggest that the apparent lack of
localisation on some trials where a mass was detected is,
at least in part, driven by image variability, such as small
masses in a proportionally large breast and normal tissue
with salient features (distractors), and response impreci-
sion. When we apply a more liberal localisation ROA,
we see evidence that coarse localisation information ex-
ists, with a higher proportion of correct localisation re-
sponses even for the more difficult images.

We can also bin trials on which detection was correct
according to their response profile to further examine

the distribution of trial performance. Figure 7 shows the
localisation data calculated using an ROA as a function
of detection performance (collapsed across radiologists
and images) for trials on which detection plus localisa-
tion were correct (blue bar), the additional localisation
correct trials produced by including a ROA (dark grey
bar) and detection only trials on which localisation was
incorrect (light grey bar).

In addition to the trials with evidence for coarse local-
isation or precise mis-localisation, Fig. 6 shows some
remaining trials on which localisation is clearly incor-
rect; these contribute to the light grey bars in Fig. 7.

Low Density High Density [ Detection only
100 = 100 I Additional Detection
and Localisation (ROA)
80 4 801 )
Il Detection and
‘8 60 § 60 Localisation (without ROA)
5 A T Chance (4.4%)
(& (&)
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Fig. 7 Percentage correct detection and localisation on target-present trials for low- and high-density mammograms plotted by duration
(250 ms, 1000 ms). Data are separated by response accuracy: detection and localisation correct (blue bar); the additional proportion of trials where
localisation is correct when a ROA is included (dark grey bar); and detection correct/localisation incorrect (light grey bar). Error bars represent 95%
confidence intervals
J
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These trials could be evidence for ‘detection without lo-
calisation; which seems key to interpretations of radiolo-
gists using ‘gist’ or a global signal. However, there is one
final consideration before making such an interpretation:
we need to be sure that the number of trials on which
this occurs exceeds the rate at which such trials would
occur simply from ‘lucky’ guesses. With any visual detec-
tion task, some proportion of trials will be correct by
chance. A d’ above chance shows more trials are correct
than would be predicted by simply guessing, but if one
wants to infer that there are trials in which there is ‘de-
tection without localisation, we need to calculate what
proportion of these could be lucky correct detection
guesses, followed by a localisation guess (which has less
chance of being correct, recall chance was 4.4% for the
non-ROA analyses and 9.1% for those including a ROA).

We calculated a guessing probability using the method
described in Howe and Webb (2014). They were inter-
ested in whether observers could ever ‘sense’ a change in
a change blindness paradigm without knowing where
the change was. In their method, one works out what
proportion of correct detection trials (in their study, de-
tection of a change) could be due to lucky guesses by
creating a hypothetical observer who can only detect a
change when it also knows what that change is (i.e. there
is no true detection without localisation, therefore any
such trials are due to correct guesses). Here, we used the
same logic, a hypothetical observer who cannot detect a
mass without also knowing where that mass is, to work
out the proportion of trials on which correct detection
combined with incorrect localisation could be due to
lucky guesses. We can then compare actual performance
with this prediction for each radiologist.

Calculated N (hypothetical observer) = Q(Y-PA)/(1-P)

where Q = proportion of possible incorrect localisations;
Y = number of target present trials on which the partici-
pant responded ‘target present’ (hits); P = proportion of
target absent trials on which the participant responded
‘target present’ (false alarms) and A = actual number of
target present trials (note, there is no correction applied
to an observer with no false alarms).

We calculate a guessing probability for the ROA local-
isation data, as this already takes into account any slight
imprecisions in the localisation responses, giving the
most accurate view of localisation information at a sum-
mary level. If the actual participants correctly indicated
the presence of a mass in the absence of a correct loca-
tion response more often than this hypothetical observer,
this provides evidence for information about the pres-
ence of an abnormality without knowing where it is: ‘de-
tection without localisation’. Figure 8 shows the number
of ‘detection without localisation’ trials from our data

Page 10 of 14

[ Observed
[ Calculated

0.5+
0.4 -

0.3 1

0.2+
0.1+ Ifl
0.0=

Low Density Low Density High Density High Density
250ms 1000ms 250ms 1000ms

Proportion of correct detection
without localisation trials

Condition

Fig. 8 The proportion of correct ‘detection without localisation’ trials
(dark grey bars) compared to the proportion of calculated (guessing)
trials for a hypothetical ideal observer (light grey bars) for low- and
high-density mammograms plotted by duration (250 ms, 1000 ms).
Error bars represent 95% confidence intervals

(dark grey bars) and the number of trials the hypothet-
ical observer would ‘guess’ for all four conditions (light
grey bars).

From Fig. 8, it is clear that there are only a small num-
ber of trials representing apparent ‘detection without lo-
calisation, which makes statistical analysis unlikely to be
reliable. However, even just from the graph one can see
that only for the low-density conditions is there any
chance that there might be more detection without lo-
calisation trials than predicted by our hypothetical ob-
server. From the image level analysis, these trials could
reflect errors accounted for by response imprecision (e.g.
large amount of breast tissue/small mass) and distrac-
tors. Recall that it is our high-density condition that has
images in which the mass is comparable in difficulty to
Evans et al. (2013, 2016), making this the key condition.
We have no evidence that for this high-density condi-
tion the number of observed ‘detection without local-
isation’ trials is more than what would be predicted by
‘Tucky’ guesses.

Discussion

The aim of this study was to examine the type of infor-
mation that is available in the initial processing of a
medical image (mammogram) by experienced radiolo-
gists, focusing on detection and localisation of potential
abnormalities. We found radiologists were able to detect
abnormalities at both durations (250 ms, 1000 ms) and
density conditions (low, high), with a significant effect of
duration. Overall summary statistics also supported the
presence of localisation information, with the radiolo-
gists performing better than chance for both the 250 ms
and 1000 ms durations, for the low- and high-density
mammograms. Breast density affected performance in a
predictable way, with better performance for low- than
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high-density images. As our key question related to a
potential dissociation between detection and localisation,
we carefully examined trials on which there seemed to
be a dissociation. We suggest a number of factors that
can lead to an underestimation of localisation informa-
tion such as image variability, the precision of localisa-
tion responses and correct detection guesses. Overall,
our data suggest that although it is possible that there
may be a dissociation between detection and localisation
on a small number of trials, particularly on easy trials
(low density), there are other plausible explanations for
the majority of such apparent dissociation trials.

Recent high-profile papers have concluded that radiol-
ogists can detect but not localise abnormalities in briefly
presented mammograms (Evans et al, 2013, 2016).
These papers suggest a different process to the previous
theory that the information in the first glance guides ex-
perienced radiologists’ attention and directs their eyes
towards the location of the potential abnormality
(Kundel & Nodine, 1975). Specifically, Evans et al. (2013,
2016) proposed that the information extracted in the
early signal is a global impression, which alerts the radi-
ologist to the presence of an abnormality and then
prompts a more thorough search, rather than guiding at-
tention to the region of the abnormality directly. This al-
ternative theory depends crucially on radiologists being
able to detect masses in the absence of any information
about location.

One of the key distinctions between the Evans et al.
(2013, 2016) studies and our study is the type of abnor-
malities included. They presented ‘subtle masses and
architectural distortions’ (Evans et al, 2013, p. 1172).
This suggests there were a mix of potentially localisable
abnormalities (subtle masses) and abnormalities with
less well-defined locations (architectural distortions,
which do not contain a discrete mass in the paren-
chyma). In our stimuli set, we only included images with
a single localisable mass, which may have increased the
likelihood of finding localisation information. Perhaps a
global or gist signal supports detection separate from lo-
cation when there is weak (or no) location information
in the stimulus itself. This seems a plausible explanation
for related intriguing findings in which radiologists are
above chance in detecting an abnormality in a patient
when shown whole mammograms of a contralateral nor-
mal breast (Experiment 2) or only a patch of a mammo-
graphic image that does not actually contain the mass
(Evans et al., 2016, Experiment 4). In these cases, there
is no ‘mass’ to localise, making these findings less rele-
vant to the question of whether a localisable mass can
indeed be detected without being localised (although ob-
viously pertinent to the idea that a global signal can be
used to diagnose an abnormality). It would be interesting
to compare the localisation performance across different
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types of breast pathology to see whether there are sub-
types of cancer for which experts are able to detect
abnormalities based on gist without any location infor-
mation (either because the type of abnormality has dif-
fuse boundaries or because there is sufficient signal of
abnormality in the overall image).

Even when we used a conservative measure of localisa-
tion (click within the mass boundary), we did not repli-
cate the findings of Evans et al. (2013, 2016) that there
are circumstances where radiologists can detect a mass
above chance but not localise it. This could simply re-
flect that we were not at exactly the right durations to
catch a dissociation due to variability in the experience
of the participants, difficulty of the images and other
cross-experiment differences between our study and
those of Evans et al. (2013, 2016). Another potential fac-
tor that could influence the difference between the stud-
ies is that our participants were more experienced than
those of Evans et al. (2013, 2016). This may be a reason
that we found localisation at a summary statistics level:
our more experienced participants could extract infor-
mation more rapidly and therefore processed the images
in greater detail. To make the inference that there is no
localisation, however, still requires a number of add-
itional steps, including using an approach such as Bayes
statistics, rather than standard frequentist statistics.
Here, we have outlined the steps that seem crucial to be
able to make an inference of dissociation between detec-
tion and localisation.

Although at the summary statistic level we did not
replicate the lack of localisation information, we did find
trials on which detection responses were correct but
those for localisation were incorrect. We were therefore
able to use these to investigate factors that might con-
tribute to an apparent dissociation between detection
and localisation. First, variability in the target-present
images might be contributing misleading data to the
summary statistics. Using real-world stimuli rather than
typical laboratory visual search displays allows for high
ecological validity, but the available images tend to be
highly variable and it is difficult to control for factors
such as co-existing variables (e.g. breast calcifications,
target number and size, and breast tissue type). Indeed,
we identified images where there were clear clusters of
incorrect localisation corresponding to a specific visual
feature in the image (Fig. 5), suggesting the detection re-
sponse was based on an incorrect identification (i.e. of
the distracting feature). Second, we find evidence that
coarse localisation information is often present in appar-
ently incorrect responses. When we use a region of ac-
ceptance around the lesion, we see clusters of correct
localisation responses surrounding the lesion. This sug-
gests that task demands, such as having to hold the in-
formation through a detection response and subsequent
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location screen, may result in a loss of precision. Alterna-
tively, it may be that the location information is only
present at a coarse level in the first place (and is perfectly
maintained). Finally, on trials where there is detection but
incorrect localisation (by whatever definition one uses), it
is important to consider the contribution of correct detec-
tion guesses. We used a method for estimating the effect
correct guesses might have on the subsequent results. The
key high-density condition, which is most similar to that
of Evans et al. (2013, 2016), gives no evidence for there be-
ing more ‘detection without localisation’ trials than would
be predicted to be lucky guesses. Thus, the pattern taken
from a small number of trials suggest that in the difficult
images, such as our set of high-density mammograms, ap-
parent ‘detection without localisation’ responses can be
accounted for by ‘lucky’ guesses.

Our only evidence of an apparent dissociation between
detection and localisation comes from the low-density
conditions. Intuitively, a salient mass seems most likely to
have localisation information recorded, as there is a stron-
ger bottom-up signal (much like a classic ‘feature search’).
Indeed, we do see overall better performance in the low-
density conditions compared with the high-density condi-
tions (although nowhere near ‘pop-out’ performance).
Although our ROA takes into account coarse localisation
information, it cannot account for image-level variability
where a distractor may have been selected or the potential
decay of localisation information over time. Thus, while it
is possible that these potential ‘detection without localisa-
tion’ trials in the low-density condition could reflect a
global signal that is used to make a detection response, as
proposed by Evans et al. (2013, 2016), these trials could al-
ternatively reflect the contribution of other factors to re-
ducing localisation accuracy. Overall, such ‘detection
without localisation” occurred on a very small number of
trials (~ 4), precluding statistical analysis, which means we
have only the numerical difference to support any such in-
ference. This means that for most of our stimuli, including
those most similar to the previous studies, when the
radiologists reported detecting a mass, they also had some
information about where it was.

The proposal by Evans et al. (2013, 2016) that radiol-
ogists use a global signal lacking in location informa-
tion has important theoretical implications, as it
identifies a very different mechanism from the Kundel
and Nodine (1975) classic theory. Our results, however,
demonstrate that successful detection of a mass in
briefly presented mammograms is typically accompan-
ied by information about location. This is more consist-
ent with the Kundel and Nodine (1975) model: that the
initial signal guides attention and eye movements to the
lesion. To fully reconcile these distinctions, we need a
study which investigates the presence (or lack thereof)
of both global and localisable signals across three
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clearly defined conditions with different degrees of po-
tential localisation (a salient mass, a subtle mass or dif-
fuse parenchymal change). We then need to ensure that
the analyses are appropriate to the key question of
whether any localisation information exists through a
thorough image-level analysis.

Both detection and localisation performance de-
creased with increased breast density at fast presenta-
tions. These results are related to what we know about
clutter in natural scenes and visual search in free-
viewing: increasing clutter or set size decreases
performance (Adamo, Cain, & Mitroff, 2015; Asher,
Tolhurst, Troscianko, & Gilchrist, 2013; Rosenholtz, Li,
Mansfield, & Jin, 2005; Rosenholtz, Li, & Nakano, 2007;
Whitney & Levi, 2011; Wolfe, 1994). Fibroglandular tis-
sue, which increases density on a mammogram, appears
more radio-opaque than fat and may increase crowding
and/or masking effects reducing performance in the
denser mammograms. In the medical perception litera-
ture, there have been a number of studies that have
investigated factors such as lesion subtlety, which may
be dependent on the surrounding anatomical structures
(e.g. Krupinski, 2005). Analogous to clutter interfering
with performance in natural scenes, our results show
similar effects in radiologists interpreting medical
images.

These findings improve our understanding of how
density can influence a radiologists’ diagnostic decision
and therefore have clinical relevance. Female breast tis-
sue is highly variable with regards to MBD (Li et al,
2013) and high levels of breast density reduce radiolo-
gist sensitivity (see Al Mousa et al., 2014). It has been
suggested that what radiologists perceive and thus re-
port in the first second is critical (Mello-Thoms, 2009),
that women with dense breasts make up almost a half
of the population (Sprague et al., 2014), and that there
is an increased risk of developing cancer in dense
breasts (Boyd et al, 2010). Our results confirm that
MBD has a negative impact on mass detection and lo-
calisation when radiologists are shown an image briefly.
From a clinical viewpoint, we should inform women
and their clinicians about their MBD levels, for appro-
priate and personalised care. For instance, in the case
of a dense breast, further imaging modalities such as
three-dimensional mammography (digital breast tomo-
synthesis), ultrasound or magnetic resonance imaging
will help facilitate a definitive diagnosis. Although for
almost half of the United States, density scoring is in-
cluded (Slanetz, Freer, & Birdwell, 2015), current breast
screening reporting protocols in Australia do not in-
clude a mammographic density rating. Our data show
that high breast density reduces the amount of infor-
mation available in the first glance, suggesting reporting
this information should be mandatory.
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Conclusions

Here, we explored the degree to which information avail-
able in very brief presentations of medical images can sup-
port both detection and localisation of a mass in
mammograms. Access to location information is crucial
for guiding actions or further analysis (e.g. eye move-
ments). We find a tight link between information support-
ing detection and localisation, using methods that allow a
stronger test of the claim that detection of a mass can
occur based on gist without knowledge of location.
Although it is certainly possible that gist and the non-
selective pathway of visual processing contribute to the
detection of a non-localisable abnormality, our systematic
examination of the factors that can result in apparent dis-
sociation between detection and localisation demonstrates
the importance of going beyond summary statistics when
seeking to test this hypothesis. We emphasise the import-
ance of considering factors such as stimulus variability,
response imprecision and participant guessing. Our results
are consistent with Kundel and Nodine’s (1975) model of
radiologist visual search suggesting that the initial signal
in a brief glance contains information that subsequently
guides attention to the abnormality. Finally, we suggest
the finding of reduced performance for dense mammo-
grams illustrates the importance of reporting density
information in the context of medical screening.

Endnotes
'Individual observer data can be found
Additional file 1.

in the

Additional file

Additional file 1: Figure S1. Detection accuracy: percentage correct for
individual radiologists on target present trials for (a) low-density and (b)
high-density mammograms on the detection task. The three radiologists
that had piloted the experiment previously are illustrated in red.

Figure S2. Detection accuracy: percentage correct for individual
radiologists on target absent trials for (a) low-density and (b) high-density
mammograms on the detection task. The three radiologists that had
piloted the experiment previously are illustrated in red. Figure S3.
Detection accuracy: sensitivity (d') for individual radiologists for

(a) low-density and (b) high-density mammograms. The three radiologists
that had piloted the experiment previously are illustrated in red.

Figure S4. Detection and localisation results: percentage correct on the
localisation task for individual radiologists on trials when detection was
correct for (a) low-density and (b) high-density mammograms. The three
radiologists that had piloted the experiment previously are illustrated in
red. Chance is 44% and adjusted to 9.1% when including the ROA
(dotted line) with 95% confidence intervals. Figure S5. Detection and
localisation results: percentage correct on the localisation task when a
region of acceptance (ROA) around the lesion is included for individual
radiologists for (a) low-density and (b) high-density mammograms. The
three radiologists that had piloted the experiment previously are
illustrated in red. Chance is 44% and adjusted to 9.1% when including
the ROA (dotted line) with 95% confidence intervals. (DOCX 1002 kb)
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ANOVA: Analysis of variance; MBD: Mammographic breast density;
SD: Standard deviation
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