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Hands-on experience can lead to
systematic mistakes: A study on adults’
understanding of sinking objects

Ramón D. Castillo1*, Talia Waltzer2* and Heidi Kloos3*
Abstract

In line with theories of embodied cognition, hands-on experience is typically assumed to support learning. In the current
paper, we explored this issue within the science domain of sinking objects. Adults had to make a guess about which of
two objects in a pair would sink faster. The crucial manipulation was whether participants were handed real-life objects
(real-objects condition) or were shown static images of objects (static-images condition). Results of Experiment 1 revealed
more systematic mistakes in the real-objects than the static-images condition. Experiment 2 investigated this result further,
namely by having adults make predictions about sinking objects after an initial training. Again, we found that adults made
more mistakes in the real-objects than the static-images condition. Experiment 3 showed that the negative effect of hands-
on experiences did not influence later performance. Thus, the negative effects of hands-on experiences were short-lived.
Even so, our results call into question an undifferentiated use of manipulatives to convey science concepts. Based on our
findings, we suggest that a nuanced theory of embodied cognition is needed, especially as it applies to science learning.

Keywords: Naïve performance, Buoyancy, Embodied cognition
Significance statement
Providing students with manipulatives and hands-on expe-
riences is a common strategy to aid science learning. How-
ever, while haptic explorations provide richly concrete,
multi-modal information about the domain, they can also
mask underlying science concepts. In the current paper, we
seek to add to this conversation, focusing specifically on the
domain of sinking objects. Adults were given the opportun-
ity to hold and manipulate various transparent containers
that differed in size and number of weights. Their task was
to predict which of two containers would sink faster in
water. Surprisingly, their performance was worse than that
of adults who were presented with static images of
containers. It appears that hands-on experiences solidified
systematic mistakes about how an object’s heaviness relates
to its sinking rate. While these effects disappeared when
real-life objects were replaced with static images, our
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findings nevertheless caution against an indiscriminate use
of hands-on manipulatives. A carefully calibrated setup
might be needed instead, namely to highlight relevant sci-
ence content over and above irrelevant features.
Background
With a significant national interest in science, technol-
ogy, engineering, and mathematics (STEM) education,
research efforts are needed to understand how to better
teach science concepts. One specific challenge is to help
the learner see beyond the most obvious regularities to
detect hidden, but scientifically valid, regularities. In the
current paper we seek to add to the conversation, look-
ing at whether haptic experiences can be helpful to sup-
port science learning. The specific domain of choice
pertains to the physics that governs sinking objects. This
domain has the advantage of encompassing everyday oc-
currences, while at the same time featuring some non-
intuitive intricacies. Thus, it is an ideal domain to study
the emergence of scientifically valid knowledge. In what
follows, we first provide a brief overview of the literature
on hands-on science learning. We then discuss research
on learning about sinking objects.
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Science learning and hands-on experiences
Many studies lament the challenge of science learning, the
claim being that students’ naïve responses to phenomena
conflict with conceptions established by the scientific com-
munity (for reviews, see Murphy & Alexander, 2008; Pfundt
& Duit, 1993). While the exact nature of students’ know-
ledge is still debated (cf., Smith, diSessa, & Roschelle, 1993),
the challenges that come with science learning are indisput-
able. They are pervasively documented in all aspects of sci-
ence, including physics (e.g., Edens & Potter, 2003; Lee &
Law, 2001; Mazens & Lautrey, 2003; Park & Han, 2002;
Pozo & Gomez Crespo, 2005), chemistry (e.g., Chiu, Chou,
& Liu, 2002; Harrison & Treagust, 2001; Boo & Watson,
2001), biology (e.g., Mikkilä-Erdmann, 2001; Windschitl,
2001), and astronomy (e.g., Diakidoy & Kendeou, 2001;
Vosniadou & Brewer, 1992). It is therefore urgent to de-
velop more effective science pedagogy, compared to typical
instruction (e.g., Ohlsson, 1999, 2000).
In recent years, the adoption of diverse and integrated ap-

proaches to STEM education have called for inclusion of a
more “hands-on” approach to teaching. The idea is to go
beyond conveying material in pictorial two-dimensional
format and endorse a “head, heart, and hands” pedagogy. It
emphasizes not only the need for students’ minds, but also
for their emotions (hearts) and their haptic experiences
(hands) to be part of learning (e.g., Carlson & Sullivan,
1999; Ferguson & Hegarty, 1995; Sipos, Battisti, & Grimm,
2008). In line with these suggestions, there is indeed evi-
dence that hands-on activities help with learning (e.g.,
Kontra, Goldin-Meadow, & Beilock, 2012; Kontra, Lyons,
Fischer, & Beilock, 2015). For example, hands-on experi-
ences in middle-school students’ science classes predict
better science performance on a standardized test of
achievement (Stohr-Hunt, 1996).
The call for hands-on activities has been further fueled

by theoretical and empirical advances in the area of
embodied cognition (e.g., Chemero, 2011; Gibbs, 2005;
Wilson, 2002; Wilson & Clark, 2009). Proponents of the
embodied-cognition theory claim that higher-level cogni-
tion is influenced by our bodily experience (e.g., Barsalou,
2008; Louwerse, 2007; 2008; Smith, 2005). And there is
extensive empirical evidence to support this claim (for
reviews, see Gibbs, 2005; Iverson & Goldin-Meadow,
2005; Spivey, 2008). It has lent credence to the peda-
gogical procedure of allowing the learner to actively ex-
perience real-life objects (e.g., Bilgin, 2006; Case & Fraser,
1999; Kahle & Damnjanovic, 1994).
At the same time, despite the optimism about hands-on

learning, an unconditional endorsement of hands-on ex-
periences is not confirmed unequivocally. For example, a
study comparing learning in a fluid-mechanics course
through video versus hands-on implementation found that
students who watched videos performed just as well on
assessments, or even better than the students who had
hands-on experience (Abdel-Salam, Kauffman, & Crossman,
2006). Indeed, there has long been a debate over the effi-
cacy of active hands-on activities versus static schematics
in teaching science (e.g., Ma & Nickerson, 2006; McNeil
& Jarvin, 2007; McNeil, Uttal, Jarvin, & Sternberg, 2009).
In a commentary on the usefulness of concrete materials
for learning, Brown, McNeil, and Glenberg (2009) caution
against making the general assumption that concrete ex-
perience always leads to better learning. Rather, hands-on
experience might sometimes relate to better learning,
while at other times it may be unrelated to learning
(Kirschner, Sweller, & Clark, 2006).

Understanding the physics of sinking objects
To better understand the role of hands-on experiences, we
focused specifically on the physics domain of sinking ob-
jects. Inhelder and Piaget (1958) were among the first to
look systematically at the development of people’s under-
standing of sinking and floating. They presented children
with a series of everyday objects (e.g., utensils, tools, toys,
materials) and asked them to decide whether they would
sink or float in water. Since then, the range of tasks
employed in this domain has expanded considerably. It in-
cludes making predictions about a single object (e.g., Kohn,
1993; Rappolt-Schlichtmann, Tenenbaum, Koepke, &
Fischer, 2007; Skoumios, 2009; Unal, 2008), comparing
pairs of objects (e.g., Castillo, Kloos, Richardson, &
Waltzer, 2015; Kloos & Somerville, 2001; Penner & Klahr,
1996), and providing explicit explanations about predic-
tions (e.g., Hsin & Wu, 2011; Meindertsma, 2014; Smith,
Carey, & Wiser, 1985).
Overall, findings are typically taken to imply the presence

of mistaken beliefs about sinking objects (e.g., Butts,
Hofman, & Anderson, 1993; Chinn & Malhotra, 2002;
Hardy, Jonen, Möller, & Stern, 2006; Kang, Scharmann, &
Noh, 2004; Kloos & Somerville, 2001; Skoumios, 2009;
Unal, 2008). For example, participants in Penner and
Klahr’s (1996) study often picked the heavier object as the
faster one - even after learning the inaccuracies of this
strategy. This pattern of mistaken behavior was further
corroborated by verbal responses about what determines
the sinking behavior of objects: Predictions about sinking
and floating appear to be focused on weight or size exclu-
sively, rather than on mass distribution (e.g., Castillo &
Kloos, 2013; Castillo et al., 2015; Smith et al., 1985; but see
Kloos, Fisher, & Van Orden, 2010; Kohn, 1993; Rappolt-
Schlichtmann et al., 2007). Thus, this domain is ideal to in-
vestigate science learning.
Many learning studies on the physics of sinking objects

have incorporated hands-on experiences as part of their di-
dactic choices (e.g., Kloos & Somerville, 2001). However,
the efficacy of this choice is far from established. In fact, the
separate effect of hands-on experiences is often confounded
with effects of instruction or curriculum changes (e.g., Unal,
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2008; Hardy et al., 2006; see also Klahr, Triona, & Williams,
2007). To our knowledge, the only sinking-objects study
that looked at the relative effect of hands-on manipulations
was with 5-year-olds and 6-year-olds (Butts et al., 1993).
Those findings showed that hands-on manipulations did
not lead to learning by themselves. Instead, only the com-
bination of both instruction and hands-on manipulation
showed improved learning. The goal of the current study
was to expand on these findings and investigate the effects
of hands-on experience versus viewing static images in
adults.

Overview of the current study
In the current study,1 adults had to predict which of two
objects would sink faster in water. Objects were transparent
containers that differed in their size and in the number of
weights inside. They were combined into pairs in such a
way that neither the number of weights nor the size of the
container was predictive of relative sinking rate. Thus, in
order to perform correctly, participants had to compare
objects on the basis of a variable other than mass or
volume. Our question was whether adults’ predictions are
affected by the type of stimuli: Do real-life objects yield
better or worse predictions than static images of the objects?
Experiment 1 investigated the role of real-life objects on

naïve performance - prior to any training. Half of the
participants were handed real-life objects that they could
explore haptically (real-objects condition). The other
participants were shown static images of the objects
(static-images condition). In Experiment 2, we applied
the same prediction task, but now looking at the
performance of participants who had been given training
beforehand about sinking objects. Finally, in Experiment
3, we looked at whether effects of hands-on experiences
would persist when real objects are removed and replaced
with static images.

Experiment 1
Do hands-on experiences influence naïve performance?
The goal of Experiment 1 was to examine whether individ-
uals would perform differently when making predictions
about real-life objects compared to static images. Adults
participated in two conditions, the real-objects condition
and the static-images condition. In each condition, they
were asked to make predictions about which of two objects
would sink faster in water. The setting mimics an educa-
tional context in which a science instructor brings along
real-life objects and prompts the learner to make various
predictions about them.

Methods
Participants
For this and all subsequent experiments, participants were
recruited from a Midwestern university. Following an
Institutional Review Board (IRB)-approved procedure, they
provided their consent for participation and received partial
course credit in return. There were 28 participants in the
real-objects condition (10 men, 18 women; mean age =
18.65 years; SD = 1.97), and there were 25 participants in
the static-images condition (11 men, 14 women; mean age
= 20.78 years; SD = 2.37).

Materials and apparatus
The objects were transparent glass containers that differed
in size. Round aluminum discs could be placed inside the
containers to obtain a desired density (see Appendix A for
detailed dimensions). Depending on a container’s size and
the number of weights inside, there were 12 unique objects.
They were combined into pairs such that neither mass nor
volume fully predicted the relative rate of sinking across all
pairs. For example, in some pairs, the object that sank faster
was the bigger and heavier container; and in other pairs,
the object that sank faster was the smaller and lighter one.
Figure 1 depicts several pairs to illustrate this point.
Real-life objects served as stimuli in the real-objects

condition. For the static-images condition, we generated
photographs of each unique pair of containers. A picture
was 960 pixels wide and 720 pixels high. One picture
showed two empty containers, each with a specific num-
ber of aluminum discs next to it. And the second picture
showed the same two containers filled with the aluminum
discs and closed with lids.

Procedure
Participants were tested individually in the laboratory,
using DirectRT Precision Timing Software (2012 Version)
to randomize the trials and record participants’ responses.
Prior to the experiment proper, participants were intro-
duced to the stimuli. They were first shown three empty
containers of different sizes and several aluminum discs.
They were then shown an image of two containers with
discs inside them. They were told that the image repre-
sented a picture taken of the real objects in front of them.
Next, participants were introduced to the task of predict-
ing which of the two objects would sink faster when
dropped in a tank of water. Participants’ prior knowledge
about buoyancy was not assessed. No explanation was
given about the underlying physics or how the participants
should go about solving the task. The experiment started
immediately.
There were 45 unique pairs of objects. Each possible pair

was presented twice (with counter-balanced left-right pos-
ition of objects). This yielded a total of 90 trials. The trials
were presented in random order, with the caveat that a full
set of 45 unique pairs was presented first, before any pair
was repeated with its counterbalanced version.
In the real-objects condition, participants sat across

from the researcher and in front of an opaque box that



Fig. 1 Examples of pairs of objects used for the predictions. Trials differ in whether the faster object in a pair was small (1), heavy (2), small and
heavy (3), big and heavy (4), or small and light (5)
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separated them (60 × 25 × 40 cm). The box served as a
barrier behind which the researcher kept all 12 containers.
Figure 2 provides a schematic overhead view of this ar-
rangement. For each trial, objects were placed in the par-
ticipant’s hands, and the participant had to choose the
object they thought would sink faster. There was no time
restriction for making a decision. After the participant
made a choice, the experimenter recorded the choice on
the computer and removed the containers from the par-
ticipant’s hands. This ended the trial.
For the static-images condition, participants sat in

front of the computer screen to view the images. Partici-
pants made their predictions using the keypad that had
two marked choices (“left” and “right”). A trial started
with the program presenting an image of two empty
containers, each next to its respective stack of discs.
After 1.5 seconds, the image was replaced with an image
of the same two containers filled with the discs. Partici-
pants then had to decide which of the two containers
would sink faster. There was no time restriction for
making a decision. The trial ended when the participant
marked a choice on the keypad.
Fig. 2 Setup for the real-objects condition. It features the 12 objects
in front of the researcher (R) and an opaque box with a camera (C)
in front of the participant (P)
Results and discussion
We first looked at the data in terms of proportion of
correct predictions. Across all possible trials, adults per-
formed above chance (mean proportion Mreal-objects = .77,
Mstatic-images = .82). However, they made characteristic
mistakes on trials in which the faster object was small and
light (see Panel 5 in Fig. 1 for an example). There were 20
trials of this kind. Figure 3A provides the mean performance
on these trials, separated by condition (see Appendix B for
the data on all other trial types). Interestingly, performance
in the real-objects condition (M = .22) was significantly
lower than performance in the static-images condition
(M = .39), independent-sample t(51) = 2.01, p < .05;
dCohen = .55. Thus, hands-on experiences appear to have
negatively impacted performance, leading participants to
make more systematic mistakes when predicting the sinking
rate of real objects. In fact, only performance in the real-
objects condition, but not performance in the static-objects
condition, was significantly below chance (assuming a
chance probability of 0.5), t(25) = 5.27; p < .001, dCohen = 1.01.
In order to examine performance in more detail, we

looked at individual performance over time. Specifically, we
were interested in whether participants performed correctly,
incorrectly, or randomly (throughout or eventually). Using a
binomial-probability test, we identified nine patterns of
Fig. 3 Proportion of correct responses on trials for which the faster
object in a pair was small and light (see Panel 5 in Fig. 1). Results are
separated by experiment and condition. *p < 0.05
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responses (see Appendix C on how they were obtained).
We then classified a person’s performance accordingly.
Table 1 shows the number of participants per pattern of
performance, separated by condition. As can be seen in the
table, more participants performed incorrectly in the real-
objects condition (75%) than in the static-images condition
(56%). Vice versa, more participants performed correctly or
randomly in the static-images condition (16%; 28%) than in
the real-objects condition (7%; 18%). While these results did
not reach statistical significance (one-tailed χ2(1) = 2.13,
p < .08), they nevertheless point in the same direction as
the parametric results. Note that there was one participant
in the real-objects condition who changed from perform-
ing consistently wrong to consistently right. However, there
were also three participants in this condition who changed
from performing consistently right to consistently wrong.
Overall, we found that individuals made more mistakes

when they predicted the relative sinking rate of real objects,
compared to when making predictions with static images.
There are two possible explanations for this finding: On the
one hand, it is possible that hands-on experiences highlight
misleading features. Perhaps the holding and hefting of real
objects highlighted the feature of heaviness, over and above
the more subtle feature of mass distribution. On the other
hand, it is possible that real-life objects led to more stable
learning - incorrect learning, but nevertheless learning.
Maybe adults’ higher average in the static-images condition
was not the result of some insight about sinking objects,
but the result of simply guessing. Indeed, the average per-
formance of participants in this condition is indistinguish-
able from chance. And while only 18% of participants in
the real-objects condition performed randomly at any point
during the experiment, a contrasting 40% of participants
did so in the static-images condition (one-tailed χ2(1) =
3.19, p < .04). Experiment 2 was carried out to disambiguate
between the two possible explanations and clarify the effect
of the real-objects manipulation.
Experiment 2
Do hands-on experiences affect performance after training?
The goal of Experiment 2 was to decide whether the pres-
ence of real-life objects highlights misleading features, or
whether it has the benefit of stabilizing performance away
from guessing. Towards this goal, we replicated Experiment
Table 1 Number of participants per pattern of performance in Expe

Condition: Correct (or eventually correct) Incorrect (or even

Random to
correct

Incorrect to
correct

Correct Random to
incorrect

Real objects 0 1 1 0

Static images 1 0 3 2

A binomial-probability test was carried out to classify a person’s performance on tri
for details)
1 with one modification. The prediction task was now car-
ried out after participants were given training about sinking
objects. The training was picture-based and identical across
conditions. It was immediately followed by the prediction
task, with half of the participants being given real-life ob-
jects (real-objects condition) and the other participants be-
ing given static images (static-images condition). Our
reasoning was that training would increase performance ac-
curacy to above chance in both conditions. Any subsequent
chance performance could then be attributed to a lack of
learning. The setting in the real-objects condition is analo-
gous to an educator providing a picture-based didactic
intervention, after which students are presented with ma-
nipulatives to which they can apply the learned concepts.

Methods
Participants
There were 28 participants in the real-objects condition (7
men, 21 women; mean age = 19.02 years, SD = 1.67) and 25
participants in the static-images condition (11 men, 14
women; mean age = 20.78 years, SD = 2.37).

Materials, apparatus, and procedure
There were two distinct phases in this experiment: a train-
ing session and a testing phase. Testing mimicked the
method used in Experiment 1: Adults were presented ei-
ther with real objects or with static images, and they were
asked to decide which of two objects would sink faster in
water. Prior to testing, participants took part in a training
that was identical for both conditions. Specifically, the par-
ticipants first made a prediction about which of two ob-
jects would sink faster. Then they received feedback about
whether their prediction was correct or not. This type of
training is known as predictive learning, supervised learn-
ing, or feedback learning (e.g., Garrison, Erdeniz, & Done,
2013; Van Hasselt, 2012). It mimics a pedagogy in which
students are asked to generate an expectation and then
test it explicitly. Materials for the training were static im-
ages of the sinking objects. Feedback was conveyed via an
outcome image of one sinking object being ahead of the
other in a water tank.

Results and discussion
The feedback training was successful. To illustrate, we
report average accuracy on participants’ predictions
riment 1

tually incorrect) Random (or eventually random)

Correct to
incorrect

Incorrect Random Incorrect to
random

Correct to
random

3 18 2 3 0

0 12 7 0 0

als for which the faster object in a pair was small and light (see Appendix C
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during the second half of the training. Across all trials, ac-
curacy was near ceiling for both conditions (Mreal-objects

= .91; Mstatic-images = .92). Even when considering only
trials for which the lighter and smaller object sank
fastest, performance was above chance (Mreal-objects = .82;
Mstatic-images = .78, ps < .01). There was no difference be-
tween conditions during training, whether we considered
the full set of trials, F(1,51) = 1.91; p > .17, or only the sub-
set of trials for which the faster object was small and light,
t(51) = 1.19, p > .24. An analysis of the 95% confidence
interval confirmed the overlap (CIreal-objects = .82 ± .04;
CIstatic-images = 0.78 ± .05). The crucial question, then, was
how participants performed after the training, when they
were asked to make predictions either with real-life ob-
jects or with static images.
Past the training, adults performed close to ceiling

across all trials (Mreal-objects = .89, Mstatic-images = .91).
The exception was their performance on trials in
which the faster object in a pair was small and light
(see Appendix B for the performance on all other
trial types). Figure 3B depicts the mean accuracy on
these trials, separated by condition. As we found in
Experiment 1, performance was again lower in the
real-objects condition (M = .66) than the static-images
condition (M = .82), t(51) = 2.95, p < .001. Thus, even
though participants demonstrated similarly high per-
formance during training, the effect of real-life objects
nevertheless emerged. Following the training, per-
formance dropped significantly for participants in the
real-objects condition, repeated-measure t(27) = 2.68,
p < .02, while it increased slightly for participants in
the static-images condition, repeated-measure t(24) =
2.31, p < .03.
Results from Experiment 2 reaffirm that hands-on expe-

riences might highlight the heaviness of objects and thus
lead to mistaken performance. In order to understand the
seriousness of these effects, we next examined whether
the negative influence of hands-on experiences would per-
sist over time.
Experiment 3
Does the mistake caused by hands-on experiences
persist? When asked to predict the sinking rate of
objects, we found that participants who were handed
real-life objects made more mistakes than partici-
pants who viewed static images. We found this effect
both in naïve performance and after training. When
faced with these results, educators may wonder how
much the use of manipulatives poses a concern for
teaching effectively. To address this question, we ex-
amined whether mistaken performance lingered past
an intermediate phase, when real-life objects were no
longer present.
Methods
Participants
Participants were the same as in Experiment 1: There
were 28 participants in the real-objects condition (10
men, 18 women; mean age = 18.65 years, SD = 1.97) and
there were 25 participants in the static-images condition
(11 men, 14 women; mean age = 20.78 years, SD = 2.37).
Materials, apparatus, and procedure
After taking part in Experiment 1, participants were
presented with the same feedback training that was
used in Experiment 2: Images of pairs of objects were
presented one by one, and participants received feed-
back on their predictions. Their predictions were then
re-assessed with static images. Thus, there were three
distinct phases of this experiment: a manipulation of
hands-on versus static-image stimuli; a training ses-
sion; and a test phase. If exposure to real-life objects
has a long-term negative effect, even after training,
we would expect to see a difference in performance
between the real-objects condition and the static-
images condition during the test phase.
Results and discussion
We focused again only on trials in which the faster object
is small and light (see Appendix B for the performance on
all other trial types). Recall from Experiment 1 that naïve
performance was below chance for both groups, and that
participants in the real-objects condition performed worse
than participants in the static-images condition. Following
the training session, participants’ accuracy improved in
both conditions, from .22 to .81 in the real-objects condi-
tion, t(27) = 10.34, p < .01, and from .39 to .82 in the
static-images condition, t(24) = 6.71, p < .01. This suggests
that the training was indeed helpful for overcoming the
initial mistakes on trials in which the faster object is small
and light. Importantly, the difference between the two
conditions disappeared after the training session: During
the test phase, performance in the real-objects condition
was indistinguishable (M = .81) from performance in the
static-images condition (M = .82), t(51) = 0.23, p > .82.
Analyses of the 95% confidence intervals confirmed these
results (CIreal-objects = .81 ± .05; CIstatic-images = .82 ± .06).
This shows that after an intermediate training session,
participants were all able to reach an equally high level of
accuracy, regardless of whether they were initially exposed
to hands-on experiences.
Overall, we found that while hands-on experiences

may initially lead to mistaken patterns of performance
when making predictions about sinking objects, these
mistakes could be overcome with training. We next
turn to a general discussion of the findings from this
research.
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General discussion
We set out to explore the influence of hands-on ex-
perience on learning the physics of buoyancy. Hands-
on experience as a pedagogical tool has traction in
the educational community. Its appeal is supported by
the theoretical and empirical argument that cognition
depends on the movement of our bodies (Abrahamson,
2014; Abrahamson, Gutiérrez, Lee, Reinholz, & Trninic,
2011; Kontra et al., 2012; Kontra et al., 2015). At the
same time, some concerns have been voiced (e.g., Ma
& Nickerson, 2006). This discrepancy warrants an
explicit investigation into the relevance of hands-on
experiences on learning. In the current study, we
looked specifically at (1) whether hands-on experi-
ences affect performance (Experiments 1 and 2) and
(2) whether the effects persist after a delay (Experi-
ment 3).
The results were clear: Despite using a setting that

invites hands-on experiences (e.g., Flick, 1993; Haury
& Rillero, 1994), we could not find support for
claimed benefits. In fact, the opportunity for hands-
on experiences, compared to viewing static images,
led to more mistakes in both naïve performance and
after training. It appears that hands-on experiences
solidified systematic mistakes about how an object’s
heaviness relates to its sinking rate. Thus, the bene-
ficial effect of embodied experience was either ab-
sent or in the wrong direction. These findings
undermine blanket claims about the advantages of
hands-on, embodied learning. In what follows, we
elaborate on this point.
Why do embodied experiences hinder STEM learning?
One could argue that our manipulation in Experiment
2 had a confound: Participants who were given real-
life objects had to switch from one type of stimulus
to another (i.e., from static images used in the train-
ing session to real objects used in the test phase). By
comparison, participants in the static-images condi-
tion might have had an advantage because they were
already familiar with static images from the training.
To rule out this possibility, it would be necessary to
carry out the entire experiment with real-life objects.
We had decided against this option because a lengthy
feedback phase cannot be carried out feasibly with
real-life objects. Note also that science-learning con-
texts typically employ images (e.g., in a text book) in
addition to hands-on activities. This means, it is com-
mon for a learner to switch between manipulatives
and images. Thus, a learning context carried out ex-
clusively with real-life objects would have reduced
ecological validity. In either case, differences in condi-
tion were already apparent in participants’ naïve
performance during Experiment 1, before any switch
in stimuli took place.
Although embodied experience failed to help STEM

learning in our experiment, there are cases in which
it does help (cf., Goldin-Meadow, Cook, & Mitchell,
2009; Goldin-Meadow & Wagner, 2005). It is possible
that embodied experiences are useful if they provide
better access to relevant information (cf., Kaminski,
Sloutsky, & Heckler, 2008). In the context of sinking
objects, the relevant information could be the distri-
bution of mass or the degree of emptiness in the
sinking container (Kloos & Van Orden, 2005). The
empty space in our transparent containers was clearly
visible. However, it would be difficult to feel empty
space haptically. Thus, while mass distribution is
available haptically in principle (e.g., Kloos &
Amazeen, 2002), the hands-on experiences in our ex-
periment were unlikely to afford participants with
meaning, beyond what the viewing of static images
could already provide.
Note that there is nothing inherently wrong with

experiences that do not yield a measurable effect in
learning. Some activities might simply serve the pur-
pose of breaking up a dull learning event, like telling
a joke during a lesson. A concern about such activ-
ities is only relevant if the experiences actually hinder
learning. This is precisely what we found in our
learning experiment: Adults exposed to real-life ob-
jects performed worse than adults exposed to static
images. We consistently observed this effect both
prior to and after a training session. Relevant infor-
mation about mass and volume was available to both
modalities: Participants could count the number of
weights and compare the sizes of the containers in
both conditions. Thus, to find a difference in per-
formance as a function of condition is not trivial.
A possible explanation for the effect of condition is

that real-life information added to task difficulty and
thus yielded non-specific mistakes. This could follow
from the idea that hands-on activities require dual
representation, which can be more demanding than
single representation (Ainsworth, 2006; Mayer &
Moreno, 1998 Mayer & Moreno, 2003; McNeil &
Jarvin, 2007). While plausible, this possibility is neverthe-
less unlikely. This is because the types of mistakes we
found were systematic and specific. A difficult task would
yield mistakes across all types of trials. Yet that is not what
we found: Participants who were exposed to real-life
objects did not demonstrate a general increase in mis-
takes. A possible increase in difficulty of the real-objects
task therefore cannot explain the findings.
Another possibility is that the haptic experiences

highlighted unnecessary aspects of the situation and
masked relevant aspects. Such focus on irrelevant
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input might have interfered with participants’ efforts
to analyze the pairs of objects carefully (cf., Kaminski
et al., 2008; Son, Smith, & Goldstone, 2008). Without
taking the time to compare the objects carefully, par-
ticipants might have defaulted to the simplistic strat-
egy of ignoring all but the most salient feature.
However, this possibility also falls short on explaining
the mistaken focus on heaviness. Differences in heavi-
ness were likely to be less salient than differences in
object size. In fact, the difference in mass between
objects was very small and therefore relatively difficult
- if not impossible - to be perceived haptically (cf.,
Weber, 1834/1978). And yet, the hands-on experience
highlighted this feature of heaviness, not size.
It is possible that hands-on experiences, even without

providing relevant information, could nevertheless
change the landscape of salience across the entire per-
ceptual system, beyond what is available haptically. For
example, embodiment could affect perception that is
outside of haptics and body movement. Such a spread
of activation would imply that visual and embodied per-
ception are interlinked: Behavior derived from em-
bodied experiences might not be separable from
behavior derived from other means of perception. This
explanation aligns with approaches to the mind as a
unified whole (e.g., Clark, 2013; Smith, 2005). Rather
than think of movement as something independent or
special, one could think of it as a component of learn-
ing and adaptive behavior, an aspect that could backfire
when it highlights irrelevant features.
Fig. 4 Specific dimensions of the materials used for the study

Appendix A
Conclusion
In summary, the findings from this study underscore the
nuanced nature of the interactions between embodied
experiences and learning. We now know that hands-on
experiences can elicit mistaken performance, such as in
the domain of density and sinking objects. Indeed,
hands-on activities may not always facilitate the best sci-
ence learning outcomes. Thus, before deciding whether
to incorporate hands-on activities in a curriculum, it is
important to consider the added information that is pro-
vided by hands-on experiences. While our results do not
lend themselves to specific recommendations for
teachers, they nevertheless caution against an indiscrimi-
nant use of hands-on manipulatives. A carefully cali-
brated setup might be needed instead, namely to
highlight relevant science content over and above irrele-
vant features.

Endnotes
1This study was part of a larger study (Castillo 2014)

designed to investigate constraints on supervised and
unsupervised learning. Adults participated in three
phases in a single session (pre-test, training, post-test).
Real-life objects were used during only one of the phases
- if at all. Data from three groups of participants are re-
ported: One group had real-life objects during the pre-
test, one group had real-life objects during the post-test,
and one group was presented with images of objects
throughout. For ease of description, the presentation of
these data is broken down into three experiments.
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Appendix B
Fig. 5 Average proportion of correct answers in Experiment 1, separated by condition and trial type (see Fig. 1 for an example of each trial type).
Trials differ in whether the faster object in a pair was heavy (heavy = fast), small (small = fast), small and heavy (small/heavy = fast), or big and
heavy (big/heavy = fast). A mixed-design condition-by-trial analysis of variance (ANOVA) revealed a main effect of trial type. Specifically, we found
worse performance on small = fast trials (M = .76) and big/heavy = fast trials (M = .94) than on the other two trial types (Ms > .98), F(3,153) = 18.88,
p < .001, η2 = 0.27, 1-β = .99.

Fig. 6 Average proportion of correct answers in Experiment 2, separated by condition and trial type (see Fig. 1 for an example of each trial type).
Trials differ in whether the faster object in a pair was heavy (heavy = fast), small (small = fast), small and heavy (small/heavy = fast), or big and
heavy (big/heavy = fast). A mixed-design condition-by-trial analysis of variance (ANOVA) revealed a main effect of trial type. Specifically, we found
worse performance on big/heavy = fast trials (M = .88) than on all other trials (Ms > .97), F(3,153) = 62.54, p < .001, η2 = 0.55, 1-β = .99. There was
also a significant condition-by-trial interaction, F(3,153) = 13.87, p < .001, η2 = 0.21, 1-β = .99: In the static-images condition, only performance on big/
heavy = fast trials (M = .74) was lower than all other trials (Ms = .99). In contrast, in the real-objects condition, performance on both big/
heavy = fast trials (M = .88) and small = fast trials (M = .95) was lower than the performance on all other trials (Ms = .99). No other effects
were significant, F(3, 153) < 0.86; p > .46.



Fig. 7 Average proportion of correct answers in Experiment 3, separated by condition and trial type (see Fig. 1 for an example of each trial type).
Trials differ in whether the faster object in a pair was heavy (heavy = fast), small (small = fast), small and heavy (small/heavy = fast), or big and
heavy (big/heavy = fast). A mixed-design condition-by-trial analysis of variance (ANOVA) revealed a main effect of trial type. Specifically, we found
worse performance on big/heavy = fast trials (M = .76) than on all other trials (Ms = .99), F(3,153) = 156.20, p < .0001, η2 = 0.75, 1-β = .99. No other
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Appendix C
effects were significant.
To determine what type of pattern best characterized a
person’s responses, we used an incremental binomial-
probability analysis. Non-random performance was de-
fined as getting the lowest possible ratio of this set: 5/5, 6/
6, 7/7, 7/8, 8/9, 9/10, 9/11, 10/12, 10/13, 11/14, 12/15, 12/
Fig. 8 Decision tree to categorize patterns of performance in Experiment 1
16, 13/17, 13/18, 14/19, 15/20 (selected on the basis of the
one-tailed binomial probability p < 0.05, assuming a
chance probability of 0.5 per trial). Figure 8 shows the de-
cision tree we followed to classify performances. Two au-
thors of the paper classified the patterns independently of
each other, yielding 100% agreement.
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