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Abstract

The visual system can be highly influenced by changes to visual presentation. Thus, numerous techniques have been
developed to augment imagery in an attempt to improve human perception. The current paper examines the
potential impact of one such enhancement, multispectral image fusion, where imagery captured in varying spectral
bands (e.g., visible, thermal, night vision) is algorithmically combined to produce an output to strengthen visual
perception. We employ ideal observer analysis over a series of experimental conditions to (1) establish a framework for
testing the impact of image fusion over the varying aspects surrounding its implementation (e.g., stimulus content,
task) and (2) examine the effectiveness of fusion on human information processing efficiency in a basic application.
We used a set of rotated Landolt C images captured with a number of individual sensor cameras and combined across
seven traditional fusion algorithms (e.g., Laplacian pyramid, principal component analysis, averaging) in a 1-of-8
orientation task. We found that, contrary to the idea of fused imagery always producing a greater impact on
perception, single-band imagery can be just as influential. Additionally, efficiency data were shown to fluctuate based
on sensor combination instead of fusion algorithm, suggesting the need for examining multiple factors to determine
the success of image fusion. Our use of ideal observer analysis, a popular technique from the vision sciences, provides
not only a standard for testing fusion in direct relation to the visual system but also allows for comparable
examination of fusion across its associated problem space of application.
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Significance
The natural visual world is complex, varying in presenta-
tion over innumerable factors such as sunlight, shading,
reflectance, and composition. Given this complexity, our
human visual system is not always equipped to efficiently
interpret all aspects of our surroundings. For example,
identifying features of a scene at night may be extremely
difficult. But, during the day, one may see so many fea-
tures of the same scene that simple tasks become hard
to accomplish. To combat such limitations in real-world
applications, multispectral imagery is utilized to enhance
particular aspects of the environment such as with near-
infrared (i.e., night vision) and long-wave infrared (i.e.,
thermal, heat-intensifying) spectral bands. These types of
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visual enhancements are particularly important in appli-
cations of critical decision making, such as in military
and law enforcement fields. Determining the most appro-
priate and effective imagery in aiding human vision,
however, can be tricky, especially given that an image
taken in one individual spectral band can distort impor-
tant information otherwise captured in another spectral
band. To take advantage of multiple vision enhancements,
researchers have employed image fusion, a systematic
combining of multispectral imagery. With such a vari-
ety of image enhancements all aiming to improve human
vision, it is important to understand if and how the
human visual system takes advantage of multispectral and
fusion techniques. This requires testing of the impacts on
the visual system at its most basic level to understand how
efficiently information is processed over changes to image
presentation. Our current paper addresses these critical
research questions.
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Background
Researchers have long searched for ways to enhance
human visual perception and performance. Given that the
human visual system can be affected by varying charac-
teristics of visual presentation, an area of critical interest
in this field is the study of multispectral image fusion.
Image fusion is a technique that takes two visual inputs
(e.g., images captured in two different spectral bands) and
algorithmically combines them in an effort to produce a
vision-enhancing output image. The stated goals of fusion
traditionally surround some improvement of human per-
ception and/or computer processing, aiming to produce
stimuli that are more informative and more suitable to
visual perception, maximize relevant information partic-
ular to a task, increase perceptibility, and provide other
such advancing effects (e.g., McCarley &Krebs, 2006; Toet
et al., 2010). However, fusion’s inherent processes and
its ultimate implementations encompass a large problem
space of parameters of consideration to determine if these
goals are being met.
There are many ways to fuse imagery, many types of

imagery that can be fused, and many applications for its
ultimate use. This means that testing the effectiveness of
fusion not only requires comparison of its effects in rela-
tion to those of the unfused or component single-band
imagery, but also requires an understanding of the impacts
of the stimuli being fused, the fusion techniques imple-
mented, and the relevant task or application for the fused
imagery. Additionally, when fusion is intended for human
use, as it is in many of its applications, the measurement
of effectiveness must meet the standard of direct assess-
ment of the human visual system in order to test the goal
of enhancing human perception.
The current state of evaluation for the visual impact of

image fusion lies primarily in the realm of image qual-
ity metrics (e.g., Hossny, Nahavandi, Creighton, Bhatti,
& Hassan, 2013; Kekre, Mishra, & Saboo, 2013; Raut,
Paikrao, & Chaudhari, 2013; Wang, Yu, & Shen, 2009)
and user preference (e.g., Aguilar et al., 1999; Ryan &
Tinkler, 1995), with only limited studies of experimen-
tal human performance with image fusion. This paper
provides a more discerning examination of image fusion,
assessing its direct impact on the human visual system

by applying a technique commonly used in visual percep-
tion research: ideal observer analysis. Using this approach,
we establish a foundation for studying the vast prob-
lem space that encompasses image fusion research and
examine the impact of fusion and its component inputs
on human information processing efficiency for a simple
stimulus set and task. This directly addresses the main
image fusion goals and allows for a better understanding
of how enhanced imagery is affecting our visual system.

Current image fusion testing and evaluation
To initiate an understanding of the phenomenological
impact of image fusion on vision, consider the example
shown in Fig. 1. Figure 1a shows a scene captured in the
traditional visible spectrum. In this image, an observer can
plainly see landscape details such as fences, trees, roads,
etc. Capturing this same image in the long-wave infrared
(i.e., thermal) spectrum provides a different set of salient
features (Fig. 1b). Here, a glowing human body, a compo-
nent that may not have been detected in the visible image,
is quickly recognized in the field. Note now, however, that
this thermal image has lost much of the landscape details
immediately apparent in the visible image. To reconcile
these two sets, a fusion algorithm can be used to produce
an image that shows both the landscape details as well as
the glowing human (Fig. 1c).
Applications of image fusion are intended to encom-

pass a “best of both worlds” visual presentation. The
enhanced imagery from fusion is generally assumed to
be as good as or better than the corresponding counter-
part images (Essock, Sinai, DeFord, Hansen, & Srinivasan,
2004); however, it cannot be ensured that fused images
will always adhere to this standard. Image quality metrics
constitute the most utilized fusion evaluation techniques
(for reviews, see Hossny et al., 2013; Kekre et al., 2013;
Raut et al., 2013; Wang et al., 2009). These metrics range
over a variety of mathematical image processing prin-
ciples but generally involve the measurement of some
property of the fused image as it relates to how it was com-
bined from the single-band image components (Hossny
et al., 2013; Kekre et al., 2013; Raut et al., 2013; Wang
et al., 2009). Common examples include mutual infor-
mation, fusion symmetry, signal-to-noise ratio, entropy,

Fig. 1 Example scene imagery captured in the a visible spectrum and b thermal (long-wave infrared (LWIR)) spectrum and c created through an
image fusion algorithm. Individual sensor imagery is publicly available from the TNO Image Fusion Dataset (Toet, 2014). Imagery in this figure
adapted from Toet, et al., (2010)
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root mean square error, and other such similar techniques
(Hossny et al., 2013; Kekre et al., 2013; Raut et al., 2013;
Wang et al., 2009).
Although these metrics may be of some value to the

enhancement of computer vision or image processing, an
immediate problem in regard to human visual percep-
tion is their lack of a direct relationship to the human
observer. Most quality metrics measure variation in phys-
ical image properties only (e.g., pixel deviation, image
intensity, contrast), without consideration for the impact
of those properties on perception and/or decision. A small
number of metrics have incorporated quality assessments
that consider human visual system properties, such as the
contrast sensitivity function (e.g., Chen & Varshney, 2007;
Chen & Blum, 2009). Although a significant step in the
connection between image fusion and human perception,
even these types of image fusion evaluations disregard the
potential impact of key elements such as task and stimulus
content.
Consider again the example in Fig. 1, but now assume

a task where an observer must detect a human target.
Although our fused image (Fig. 1c) provides an encom-
passing combination of the salient features from the
individual sensors, the thermal image (Fig. 1b) primarily
highlights the human target without distracting scene fea-
tures. Thus, for this task, it is possible that themost appro-
priate image enhancementmay not be fusion at all, but the
thermal component imagery instead. This vital consider-
ation, that single-band stimuli may be more appropriate
than the fused stimuli for given experimental parame-
ters, is missed with nearly all quality metric applications.
Moreover, many traditional metrics do not even allow for
evaluation of the individual sensor. That is, many of them
incorporate calculations based only on how the informa-
tion was combined. Thus, the resulting measure can only
be applied at the fused level without a test for the relative
individual component sensor quality or performance.
To truly understand whether image fusion has an

enhancing effect, it is necessary for the evaluation
approach to consider the psychological factors (e.g., task,
stimulus content, etc.) that can impact human visual per-
formance. Thus far, efforts for assessment of humans lie
in two areas: subjective rating studies and a small, very
disparate set of research studies measuring basic human
behavior. The former asks participants for rankings of
characteristics ranging from pure preference of imagery
up to self-ratings of their personal aptitude in workload,
confidence, and ability while completing tasks using fused
and unfused imagery (e.g., Aguilar et al., 1999; Ryan &
Tinkler, 1995). These types of evaluations, although infor-
mative on the partiality of users, cannot ensure a veri-
fiable measure of the impacts of imagery on perception,
as human judgement of self-preference and performance
provides many opportunities for internal error and/or

bias. The latter studies do provide an understanding of
human behavior with imagery in given contexts; how-
ever, this behavior is hard, if not impossible, to compare
impartially across applications and techniques in order to
address the overarching image fusion goals. More specifi-
cally, these studies, sparse in number, encompass a diverse
scope of methods, analyses, and applications with mea-
surement techniques that cannot compare the impacts on
the human visual system across such variety without con-
founds from the variety itself (i.e., information content,
see more on this in the ideal observer approach to fusion
evaluation section below).
Tables 1 and 2 summarize the procedures and analyses

used in the human behavioral research. The listed items
vary in both complexity and structure within and between
studies. The variety seen here is an initial indicator of the
diversity in image fusion approaches. All of this research
has some goal of examining the impact of fusion; however,
aspects such as stimulus content, fusion type, and experi-
mental focus vary from study to study. For brevity, we will
not summarize all human performance studies, but will
give a few examples elucidating the range of applications.
In Neriani, Pinkus, and Dommett (2008) participants

were asked to view terrain boards captured in visible
and thermal spectra and fused via four fusion algorithms.
The task consisted of deciding whether a “hot” tank was
present or absent and then identifying in which quad-
rant it appeared. Reaction time results showed no signif-
icant improvement while viewing fused imagery. Krebs
and Sinai (2002) also used a basic visual task structure,
but examined chromatic and achromatic fused imagery
of real-world nighttime scenes containing woods, fields,
roads, and buildings. Over three experimental investiga-
tions, one where participants reported whether people or

Table 1 Procedures utilized in research examining human
performance with image fusion

Procedure References

Target detection/ Krebs, Scribner, Miller, Ogawa, and
localization Schuler (1998); Krebs and Sinai (2002);

McCarley and Krebs (2000); Neriani et al. (2008);
Steele and Perconti (1997); Waxman et al. (1996)

Identification/ Essock et al. (1999); Essock et al. (2004);
categorization McCarley and Krebs (2006); Sinai, McCarley,

Krebs, and Essock (1999); Steele and
Perconti (1997); Toet and Franken (2003)

Discrimination Krebs and Sinai (2002)

Relational positioning Toet et al. (1997)

Inversion Krebs and Sinai (2002); Sinai et al. (1999);

Toet and Franken (2003)

Horizon assessment Steele and Perconti (1997); Toet and Franken (2003)

Passive viewing Toet, de Jong, Hogervorst, and Hooge (2014)
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Table 2 Analyses utilized in research examining human
performance with image fusion

Analyses References

Reaction time/ Essock et al. (1999); Essock et al. (2004);
accuracy Krebs et al. (1998); Krebs and Sinai (2002);

Neriani et al. (2008); Sinai et al. (1999);
Steele and Perconti (1997); Toet et al. (1997);
Waxman et al. (1996)

Signal detection Krebs and Sinai (2002); McCarley and Krebs (2000);
measures McCarley and Krebs (2006); Sinai, DeFord,

Purkiss, and Essock (2000); Toet and Franken (2003)

Free recall measures Toet et al. (2014)

Eye tracking fixations Toet et al. (2014)

Feature tracing Toet et al. (2010)

vehicles were present in the scene, one where the task
was to determine if a scene was upright or inverted, and
one where participants indicated whether two image pre-
sentations were the same or different, researchers found
varying effects of fusion with strong task dependencies.
Essock and colleagues (Essock, Sinai, McCarley, Krebs,
& DeFord, 1999; Essock et al., 2004) took a categoriza-
tion approach to their tasks, asking participants to classify
whether stimuli represented imagery types with content
such as sky, trees, buildings, and water. In these stud-
ies, varying patterns in d′ were found across categories
for monochrome fusion and individual sensor types; how-
ever, color fusion produced better performance than its
individual sensor counterparts overall.
Other studies have taken a more applied approach to

fusion testing. Toet, IJspeert,Waxman, and Aguilar (1997)
asked participants to evaluate the position of a person
relative to scene detail in still images taken from various
frames of video. Participants were instructed on specific
scenarios for each video: (1) monitoring a fence while
guarding a United Nations camp (determining position
in relation to a fence in order to distinguish innocent
bystanders from those wanting to perform subversive
action), (2) guarding a temporary base in a wooded area
(determining position in relation to the trees to detect
and counter infiltration attempts), and (3) surveying a
large dune landscape (determining position in relation to
dunes to detect any attempt to infiltrate a certain area).
In this study, both color and grayscale fusion produced
less error in the response of a target’s relational posi-
tion than the images from the single-band counterparts.
Steele and Perconti (1997) selected night vision-qualified
Marine Corps and Army National Guard rotary wing avi-
ators for their participants in a part task simulation to
examine the impact of image fusion. Tasks widely varied in
this study, with questions specifically related to the stimu-
lus content. These included locating objects, determining
positions, giving details about objects, determining if the

horizon was level, identifying shapes and orientations,
voting on acceptability of images, and giving rank orders.
Results were mixed, varying by type of fusion, task, and
scene content. Finally, there is a small, scarce set of stud-
ies that examine image quality metrics in relation to direct
human performance (Howell, Moore, Burks, & Halford,
2007; Wei, Kaplan, & Burks, 2009). For example, Howell
et al. (2007) correlated human performance ratings in an
object identification study with image fusion quality met-
rics findings. Ultimately, these researchers determined
that in their set of examinations, no particular metric had
the best correlation.
The full set of human performance studies provides an

exploration into the impact of fusion when applied to spe-
cific contexts and experimental structures. Collectively,
the research provides inconsistent results. The source of
this variability most likely originates in the disparate scope
of image fusion specifications, applications, analytic tech-
niques, and procedural methods used across studies. This
paper uses ideal observer analysis to establish a frame-
work that allows for comparison across such factors while
accounting for the inherent amount of information con-
tent in the full image fusion application. Additionally, we
test this on a simple stimulus and task experimental struc-
ture to understand the basic impacts of fusion on the
visual system.

Ideal observer approach to fusion evaluation
Image fusion appearance can be considerably affected
by the characteristics of its combination such as sen-
sor components, combining algorithm, environmen-
tal collection conditions, and stimulus content (e.g.,
Krebs & Ahumada Jr., 2002). Additionally, the effect
of fusion on the visual system has great potential to
be influenced by changes in task constraints, stimu-
lus attributes, and observer characteristics. Thus, under-
standing fusion’s overarching impact on the visual system
can be tricky given the potential for information to
change as the parameters of its implementation change.
To provide a direct comparison of the impacts of dif-
ferent fusion enhancements on the visual system thus
requires consideration of how information changes across
imagery.
We employ ideal observer analysis (e.g., Geisler, 1989,

2011) to examine the effect of varying single-band and
fused imagery enhancements on information processing
in the human visual system. This powerful technique
from the vision sciences (see Geisler, 2011 for review)
examines human performance in relation to a statisti-
cally optimal Bayesian decider (i.e., an ideal observer).
The ideal observer makes use of all information within
a given experimental structure, allowing for it to estab-
lish a strict upper bound on performance and operate at
100% efficiency. The derivation of the ideal decision rule



Bittner et al. Cognitive Research: Principles and Implications  (2017) 2:19 Page 5 of 18

takes into account all factors of what is being examined
(i.e., stimuli, task constraints, and any other experimen-
tal manipulation). Thus, the performance of the ideal
observer is indicative of the relative amount of informa-
tion across various experimental manipulations. In our
experimental design, ideal observer simulations were per-
formed over blocks of trials that varied in single-band and
fused imagery enhancement. Human performance was
examined in relation to the ideal observer, a construct
defined as efficiency, to determine the direct impact of
each of these imagery types.
The use of ideal observer analysis provides a number

of distinct advantages to understanding the impact of
multispectral and image fusion enhancements. Specifi-
cally, it allows us to directly measure human information
processing without the construct of information content.
This is vital to understanding the effects of imagery on
the human visual system while taking into account the
information variation over experimental factors such as
stimulus and task complexity. With this, we are able to
directly address the overarching goals of image fusion
and image enhancement and examine the multidimen-
sional problem space. Additionally, the ideal observer
provides an in-depth look at the variation in information
distributions over imagery enhancements. This can be
beneficial to guiding future human experimentation. This
important characteristic is covered in more detail in the
Discussion.

Experiment
We provide in this paper a study of the impacts of image
fusion using ideal observer analysis. The goals are twofold:
(1) to establish a framework for testing the impact of
image fusion on human information processing efficiency
over the varying aspects surrounding its implementa-
tion (e.g., stimulus content, task) and (2) to examine
the effectiveness of fusion in a basic application. Within
the experimental investigation we evaluate the core
influence of single-band imagery and image fusion
enhancements on the human visual system with a sim-
ple experimental structure. Specifically, we examined a
simple 1-of-8 identification task on the orientation of Lan-
dolt C images presented over varying imagery conditions.
Through the derivation of an ideal observer, we exam-
ined the relative amount of information between imagery
sets. We then calculated human efficiencies through the
relationship between human and ideal performance.
To consider fusion as a whole, testing must be

approached systematically, building from fundamental
examinations to more complex applications with direct
comparison of results at each step and consistent consid-
eration for the impacts on the human visual system. This
requires that we start with basic, yet exemplary, exper-
imentation in which the imagery captured fits within a

well-defined, simple task structure. The stimuli for our
experimental conditions were methodologically chosen
for the purpose of providing a simple structure that encap-
sulates the characteristics of single-band image enhance-
ment and algorithmic fusion combination. Considering
again the example in Fig. 1, this imagery, although inter-
esting in application and important to the demonstra-
tion of fusion with natural scenes, provides a number of
initial confounds for principled examination of the foun-
dational impacts of multispectral and fusion enhance-
ment. Specifically, an investigation using such stimuli
could likely provide results that are skewed to the com-
plex characteristics of the scene itself or to compli-
cated task demands that accompany interaction with such
imagery.
Starting instead with a simple stimulus allowed us to

see if the goals of image fusion (i.e., enhancement) would
hold given basic image content, as fusion is assumedmany
times to be as good as or better than its corresponding
single-band images (Essock et al., 2004). The results of
this experiment stand on their own for our chosen simple
experimental structure, and the overarching process pro-
vides the framework for testing at all levels of the fusion
multidimensional problem space.

Methods
A total of six conditions (c0–c5) were used in this experi-
ment. Each condition corresponded to a particular pairing
of single-band imagery. Within each condition there were
nine experimental blocks, two blocks corresponding to
the single-band imagery types (e.g., in c0: visible, hot-
white (HW) thermal) and seven blocks for each of the
algorithmically combined image fusion sets (e.g., average,
Laplacian, principal component analysis (PCA), etc.). All
work was carried out in accordance with the Code of
Ethics of the World Medical Association (Declaration of
Helsinki).

Participants
The study included a total of 28 participants (15 male,
13 female), ranging in age from 18 to 48. All partici-
pants were recruited from Wright-Patterson Air Force
Base, Wright State University, and the surrounding area.
Participants had normal to corrected-to-normal vision
and unencumbered use of both hands. Informed consent
was obtained from all individual participants included in
the study. Twenty-four participants (four per condition)
completed only one study condition. Four participants
(Participants 1–4) completed all conditions in the study
in order (c0–c5) to determine if there were measurable
learning effects. The participants who completed all con-
ditions initially consented for condition c0 alone and were
invited to participate in all future conditions based on
their availability.



Bittner et al. Cognitive Research: Principles and Implications  (2017) 2:19 Page 6 of 18

Materials
The experiment was performed using a 2012 Mac Pro
running Mac OSX 10.6 attached to a VIEWPixx/3D dis-
play monitor made by VPixx Technologies Inc., St Bruno,
QC, Canada. The monitor was set to 1920x1080 resolu-
tion with a 120 Hz refresh rate and was calibrated prior
to experimentation using a Minolta CS-100 photometer.
Responses were made with a numberpad on a standard
keyboard. Participants completed the experiment seated
in a dark room at a standard table with their chin in
a chinrest positioned 140 cm from the computer moni-
tor. The monitor was the only source of light during the
experiment.

Stimulus creation
We photographed Landolt C images in varying individ-
ual sensor bands in a controlled environmental setting
and fused them over a number of traditional fusion
algorithms. The imagery sets represent the most basic
elements of each type of enhancement, allowing us to
examine their core influence on human perception.
The Landolt C stimulus was chosen as an experimen-

tal target because it demonstrates the basic elements of
single-band imagery while providing comparison across
image sets. The stimulus itself, although very sim-
ple in form, exhibits the attributes that correspond to
each particular type of visible enhancement including
elements such as “glow,” camera noise, edge “sharp-
ness”/“blur”/“detail,” etc., all characteristics that have the
potential to influence human perception. Given the cap-
ture of such features, the ultimate fusion of these images
provided a representation of the prime effects of each
algorithm with a combination of basic single-band image
capture.
Capture: Imagery for this study was obtained as part of

a larger image collection utilizing a number of multispec-
tral cameras. Table 3 provides the specifications of five
of the cameras utilized in the large collection. The cur-
rent study made use of the low resolution visible, night
vision (NIR), short-wave infrared (SWIR), and hot-white
(HW) thermal (LWIR) images. We also created hot-black
(HB) imagery, digitally inverted from the HW images col-
lected. This was included in our examination, as many
LWIR cameras used inmilitary and law enforcement fields
include a physical switch option for HB or HW prefer-
ence. The Landolt C photographed with each camera was
constructed as a cut-out from a white acrylic sheet with a
black heating plate as the background (heated for thermal
image capture). Figure 2 shows this construction. Small
metal squares (warmed by touch for thermal collection)
were added to the outer corners of the Landolt C appa-
ratus to provide reference for image registration. Images
of the Landolt C were captured in eight orientations, 0°,
45°, 90°, 135°, 180°, 225°, 270°, and 315°, through physical

Table 3 Camera specifications for image capture

Camera type Spectral band Array size Collection
(μm) (HxV) conditions

Visible (low resolution) 0.4 − 0.75 640 x 480 Sunlamp@80W

Visible (high resolution) 0.4 − 0.75 768 x 494 Sunlamp@80W

Night vision (NIR) 0.665 − 0.9 768 x 493 Sunlamp@10W

SWIR 0.9 − 2.5 320 x 240 Sunlamp@40W

Hot-white 7 − 15 640 x 480 No lights;

thermala (LWIR) heatplate@�10°C

aDigitally inverted to create hot-black thermal imagery
NIR, SWIR, LWIR stand for near, short-wave, and long-wave infrared, respectively;
sunlamp settings in wattage

rotation of the acrylic plate. Ten images were captured for
each orientation within camera types.
Because of the differing physical compositions and func-

tions (e.g., night or day use, capture capabilities) of single-
band sensor cameras, image capture condition variables
such as lighting, zoom, and distance may never be held
to strictly equivalent levels without adverse effects (e.g.,
extreme amounts of noise in the image, damage to the
camera due to excessive light exposure, Landolt C appear-
ing too small or out of frame). Therefore, our goal was to
control as many environmental factors as possible to use
the most equivalent set of capture conditions across the
various sensors while maintaining a well-calibrated image
in each spectral band. Thus, a concerted effort was made
to provide as much consistency and control as possible
across sensors with a discernible Landolt C within each
camera. All images were collected in the same room using
the same Landolt C apparatus. The distance between the
camera and apparatus, camera zoom, and focus were set
for each condition such that the Landolt C resided cen-
trally and was of a similar size in relation to the image
frame (see the following Registration section for more
information on post-capture image sizing and cropping).

Fig. 2 Landolt C apparatus. Images as in Pinkus, Dommett, and
Task (2010)
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A sunlamp suspended from the ceiling at a height of
approximately 120 inches with adjustable wattage settings
was used in all conditions requiring lighting. Wattage val-
ues were chosen such that the image appeared clearly
and with minimal stimulus noise for each camera. These
values are listed in Table 3.
Registration: Careful registration of pre-fused imagery

is essential to producing fused images free of extraneous
artifacts in any fusion application. Given that our imagery
was collected with cameras of varying geometries and
that stimulus orientations were produced through physi-
cal rotation of the Landolt C apparatus, the potential for
misalignment of raw imagery existed from a number of
error sources. Therefore, the registration process imple-
mented in our study required assessment of alignment
both within and between sensor stimuli.
For selecting the sensor types that required within-

sensor registration, the cumulative absolute squared dif-
ference between the 80 stimuli was calculated for each
sensor set. With this technique, images of perfect align-
ment over orientations produced a difference image show-
ing clear portions of all eight orientation “gaps” (i.e., the
circular portion of the Landolt Cs cancelled out across
stimuli). Difference images for each sensor set were cal-
culated and examined visually for this property, and those
deemed to have differences outside of the structure were
further subjected to within-sensor registration. Figure 3
provides examples of this determination.
Alignmentwithin sensor sets encompassed matching all

Landolt C orientations from a particular sensor to the
first “up” image taken in that set. This anchor image pro-
vided a basis for position for all Landolt Cs within that
set. Using the similarity method, each image was matched
to the within-sensor anchor through both translation and
rotation, thus aligning all images on top of each other
within that set.
Registration between sensor sets was performed on all

imagery regardless of within-sensor registration determi-
nation. This process also required the use of an anchor
image. To ensure that all imagery was aligned consistently
across sensors, the anchor image for between-sensor

Fig. 3 Example images resulting from the cumulative absolute
squared difference between all stimuli within a sensor set. Sets
resulting in difference images like those shown in (a) did not require
within-sensor registration. Sets resulting in difference images such as
those in (b)were required to go through the process of within-sensor
registration

registration was the first “up” image taken in the low
resolution visible set. This provided a basis for defining
not only the position of the Landolt C (as in within-sensor
registration) but also the location, size, and proportion
of the stimulus in relation to the image frame. Between-
sensor registration used the projective method allowing
for shifts of the imagery to match any difference in view-
ing angle, thus equating all stimulus locations regard-
less of camera geometry. This method was applied to
all stimuli following any already-completed within-sensor
registration.
During both methods of registration, matching of each

image to the chosen anchor encompassed alignment
of a set of registration points via the chosen similar-
ity and/or projective method. Four of the registration
points used were the registration markers placed on
the outer square of the Landolt C apparatus during
image capture. The other points were derived from the
imfindcircles function in MATLAB, which uses the cir-
cular Hough transform to detect the circular portions
of the Landolt Cs. Following within- and between-
sensor registration, all images were cropped to 150x150
pixels.
Fusion: Image fusion was accomplished using the Image

Fusion Toolbox for MATLAB 5.x version 1.0 (Rockinger,
1999) which encompassed a set of six traditional fusion
algorithms: average, Laplacian pyramid (Laplacian), min-
imum, maximum, principal component analysis (PCA),
and discrete wavelet transformation (DWT). A seventh
function was added after we noticed a number of cases
where PCA produced uninterpretable imagery (see, for
example, the c4 PCA in Table 4). Further investigation of
these phenomena revealed that the traditional PCA algo-
rithm allowed for the resultant imagery to contain pixel
values outside of the displayable range. Thus, the result-
ing images contained pixel values cut off at full white
or full black values. Therefore, we created and addition-
ally tested an adjusted PCA algorithm that rescaled the
component scores to displayable values. See the Appendix
for a further description of each fusion algorithm
process.
Stimuli, previously registered and cropped, were fused

such that matching orientation and image capture order
were preserved during fusion. For example, in condition
c0, the first image taken in the “up” orientation in the vis-
ible (low resolution) sensor was fused with the first image
taken in the “up” orientation in the HW thermal sensor,
and so forth. Sample images for each individual sensor and
fused set are shown in Table 4.
Final specifications: Following all processes, stimu-

lus sets of both fused and individual sensor images
were adjusted to represent pixels in values of contrast
relative to a background of average luminance using a
contrast definition of (Lpixel − Lbackground)/(Lbackground).
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Table 4 Sample imagery from each experimental condition
(c0-c5) and block

Final stimuli were 4.1 cm x 4.1 cm, subtending 1.68° of
visual angle horizontally and vertically. For the use of ideal
observer analysis, stimuli were presented in white noise
during experimental trials. This noise was uniquely sam-
pled Gaussian contrast noise (σ 2 = .01) added to each
pixel of the image on each trial.

Procedure
Table 4 depicts the condition and block types over the
full experiment with an example from each imagery set.
Participants 1–4 completed all experimental conditions in
order (c0–c5) with block orders randomized within each
condition. All other participants were randomly assigned
to one condition, also with block orders randomly pre-
sented. Conditions were completed across two experi-
mental sessions, with each session lasting approximately
90 minutes. Conditions c0–c3 and c5 contained nine
blocks of trials each, while condition c4 contained only
eight blocks, given that PCA did not produce discernible
Landolt C imagery. Each of the blocks within conditions
consisted of 350 trials.
At the beginning of a condition, participants were given

a basic safety briefing and screened using the Snellen eye
chart to ensure 20/20 corrected vision or better. A set
of 24 practice trials was then administered to familiarize

participants with the response selections. During these
practice trials, a large outlined C-like shape was presented
in one of eight possible orientations, with each orientation
shown three times randomly across the practice trial set.
The outlined object appeared on the screen for unlimited
viewing until the participant responded. Feedback was
then given in the form of a high (correct) or low (incorrect)
beep.
Prior to experimental trials, participants were put

through a 5-minute period of dark adaptation. Trials were
self-initiated such that an outlined box was presented on
screen until a button press by the observer. Following trial
initiation, the stimulus, chosen randomly from the set of
80 possible images, was presented in Gaussian (white)
noise for 500 ms. A 1-of-8 orientation response was made
using the number pad on the keyboard, selecting the
number key around the central ‘5’ which corresponded
to the eight orientations of the Landolt C opening.
Following response, auditory feedback (i.e., high, low
beep) informed the participant of a correct or incorrect
response.

Threshold measurement
Performance in each block was defined through deter-
mination of a contrast energy threshold. Contrast ener-
gies (integrated squared contrast, measured in degrees
squared) were varied over two interleaved staircases, a
1-down, 1-up and a 2-down, 1-up rule, for a total of
350 trials per block. A Weibull psychometric function
was fit to the collective staircase data to produce a 50%
contrast energy threshold (Note: the chance performance
for a 1-of-8 identification task is ∼13%). Variability for
each threshold was determined through 200 bootstrap
simulations (Efron & Tibshirani, 1993).

Ideal observer
Like human experimentation, the ideal observer perfor-
mance for each block was simulated over a 1-up, 1-down
staircase procedure to obtain a contrast energy threshold.
The decision made by the ideal observer was formu-
lated using Bayes’ rule in the given Landolt C task in a
manner consistent with traditional ideal observer analy-
sis application. This was accomplished by the following
procedure.
On any trial, let O represent the orientation of the Lan-

dolt C and S be the noisy stimulus shown on a trial. In
this task, the observer must decide between eight possible
orientations (i = 1, . . . , 8) and each orientation has a set
of ten images (j = 1, . . . , 10) that can be selected as the
stimulus. The posterior probability for each orientation,
Oi, becomes:

P(Oi|S) = P(Oi)P(S|Oi)

P(S)
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Given our experimental parameters, the prior probabil-
ities for each orientation, P(Oi), and the normalizing fac-
tor, P(S), are both constants that can be removed without
affecting the relative orderings of P(Oi|S). The probability
of concern then becomes P(S|Oi). Given that the stimulus
is presented in Gaussian noise and there are ten possible
images for each orientation,

P(S|Oi) =
10∑

j=1

n∏

k=1

1√
2πσ 2

e−
1

2σ2
(Sk−Oijk)

2

where n is the total number of pixels and σ is the stan-
dard deviation of the Gaussian distribution from which
the external noise was generated. The ideal observer then
chooses the Oi with the highest probability.
Ideal observer simulations for each block were com-

pleted over 10,000 trials. Just as in the human analyses,
a 50% contrast energy threshold was found by fitting a
Weibull psychometric function to the ideal staircase data
and determining variability over 200 bootstrap simula-
tions (Efron & Tibshirani, 1993).

Efficiency
Efficiencies were defined as the ratio of ideal to human
contrast energy threshold. A separate efficiency was com-
puted for each single-band and fused image block within
each condition. All estimates were computed at the indi-
vidual participant level.

Results
Figures 4, 5, and 6 show the human and ideal performance
over the six experimental conditions (i.e., visible-HW
thermal, visible-HB thermal, visible-SWIR, SWIR-HW
thermal, night vision-HW thermal, and night vision-HB
thermal). Displayed within each condition box are two
series of bar plots—one showing human threshold data
and the results of the ideal observer simulations, and one
showing human efficiencies. All single-band imagery data
are represented in the outermost bars of each bar plot with
the seven innermost bars representing the performance
on the fused images derived from the two sensors on the
ends.

Contrast energy thresholds
The upper left graphs in each condition box contain
contrast energy thresholds obtained from human exper-
imentation and ideal observer simulation for each
experimental block. Human thresholds indicate raw per-
formance with each imagery type. Ideal observer thresh-
olds are indicative of the relative amount of information
between the block types with lower thresholds meaning
more information.
We statistically examined the patterns in human con-

trast energy thresholds by applying a linear mixed effects

model with participant as a random effect, over the
dataset from the full experiment. Linear mixed effects
modeling is useful for analysis of experiments with
repeated measures, as is the case for our experiment. The
analysis showed significant main effects of condition type
(F(5, 378) = 12.35, p < 0.0001, η2 = .04) and block type
(F(11, 378) = 5.90, p < 0.0001, η2 = .13), indicating that
choice of single-band sensor combinations and imagery
type were influential to the results. To examine the driv-
ing forces behind these differences, we investigated the
relationship between imagery blocks within each experi-
mental condition. A one-way repeated-measures analysis
of variance (ANOVA) showed that there were significant
differences between blocks in each condition except c5,
with c0 (F(8, 56) = 59.06, p < 0.0001, η2 = .84), c1
(F(8, 56) = 3.14, p = .005, η2 = .05), c2 (F(8, 56) =
2.40, p = .026, η2 = .10), c3 (F(8, 56) = 16.79, p <

0.0001, η2 = .60), c4 (F(7, 49) = 4.71, p = 0.0004, η2 =
.35), and c5 (F(8, 56) = 1.13, p > .25, η2 = .05).
Post hoc pairwise comparisons using Bonferroni cor-

rection were performed between all block combinations
within each condition set to determine which specific
blocks differed from one another. These revealed signif-
icant differences between the maximum algorithm and
all other blocks (respectively), and the Laplacian and
hot-white thermal blocks within c0, and between the
night vision and maximum, and maximum and mini-
mum blocks within c4. No other differences between
block types were shown to be significantly different
within conditions in pairwise comparisons, meaning that
the significant difference indications in the ANOVA in
conditions c1, c2, and c3 indicate negligible effects,
if any.
The dark gray bars presented in the contrast energy

graphs of Figs. 4, 5, and 6 show the thresholds obtained
in ideal observer simulations. Note that the amount of
information provided to the human observer was not the
same within and between all imagery conditions (i.e., ideal
observer thresholds vary over blocks). Therefore, conclu-
sions of the effects of image enhancement based on the
human contrast energy threshold data should be made
with extreme caution. Although the thresholds are repre-
sentative of raw human performance, it is impossible to
determine from these data alone whether the effects are
driven by human ability to process information efficiently
in the visual system or by differences in information con-
tent across imagery conditions. We must instead consider
these data in relation to the inherent information content
to determine human information usage across imagery
types.

Efficiencies
To directly measure human ability to use available infor-
mation in each experimental block, we calculated human
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Fig. 4 Results c0 and c1: Each box represents one experimental condition. Within each box are contrast energy thresholds graphs (upper left) and
human efficiency (bottom large). Bars of human data are means across individual participants, represented as points. Error bars on the ideal data are
± 1 SD derived from bootstrap simulations

processing efficiencies. These were determined as the
ratio of ideal to human contrast energy thresholds. These
are displayed in the efficiency graphs in Figs. 4, 5,
and 6.
As with the thresholds, we ran a linear mixed effects

model with participant as a random effect over the full
experimental dataset to determine if the condition type
and block type were statistically significant across all

participants. We again found significant main effects of
condition type (F(5, 378) = 18.73, p < 0.0001, η2 = .11)
and block type (F(11, 378) = 7.46, p < 0.0001, η2 = .10).
We examined these effects further using a one-way
repeated-measures analysis of variance with post hoc pair-
wise comparisons using Bonferroni correction between
all block combinations within conditions. These crucial
results are summarized in Table 5.



Bittner et al. Cognitive Research: Principles and Implications  (2017) 2:19 Page 11 of 18

Fig. 5 Results c2 and c3: Specifications are as noted in Fig. 4

Here, it was shown that conditions c1, c2, and c5
had no significant differences among image types (i.e.,
blocks). However, conditions c0, c3, and c4 showed that
differences existed within the conditions. This is summa-
rized in the middle panel of Table 5. Pairwise compar-
isons determined which specific blocks exhibited these
differences. These are shown in the rightmost column
of Table 5. Notably, conditions c0 and c3 shared the
result that the maximum algorithm differed from all other
image blocks within those sets. Additionally, c4 showed

differences between all blocks with the average algorithm
block, Laplacian algorithm block, and wavelet algorithm
block.
Taken together, these results show that efficiencies

are mainly affected by condition. That is, the choice of
single-band sensor combination influences the variation
in efficiencies across image type. Additionally, although
some algorithms produced significant differences within
conditions, no patterns were shown consistently across
conditions due to algorithm choice, and fusion as a
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Fig. 6 Results c4 and c5: Specifications are as noted in Fig. 4. Note: In condition c4 graphs, a single participant outlier was removed in both the
average and wavelet conditions for proper viewing

whole was not shown to outperform individual single-
band imagery. The implications of these results will be
considered further in the Discussion.

Potential learning effects
Given the basic nature of the stimuli and task structure,
the potential for an influence of learning existed over
the course of the experiment. To examine if this was
a factor in our data, an analysis was performed on the

efficiencies from participants who completed all condi-
tions in sequential order (i.e., Participants 1–4). Recall
that each of these participants completed the full set of
experimental conditions, c0–c5, with blocks assigned ran-
domly within conditions. Given that these participants
completed a total of 53 blocks, their extensive experi-
ence with the experiment allowed us to examine the
potential for efficiency to be influenced over time in the
study.
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Table 5 Results from repeated-measures ANOVA and pairwise
comparisons with Bonferroni correction on human efficiencies

Condition Repeated-measures Pairwise comparisons
ANOVA with significant differences

c0 F(8,56) = 40.75 every c0 block - maximum

Fig. 4 top graph p < 0.0001 (respectively)

η2 = .62 visible-average

significant visible-wavelet

Laplacian-wavelet

c1 F(8,56) = 1.24 N/A

Fig. 4 bottom graph p = 0.296

η2 = .03

not significant

c2 F(8,56) = 2.33 no significant differences found

Fig. 5 top graph p = 0.031 (i.e., differences, if exist, are

η2 = .08 negligible)

significant

c3 F(8,56) = 31.28 every c3 block - maximum

Fig. 5 bottom graph p < 0.0001 (respectively)

η2 = .62 Laplacian-average

significant Laplacian-minimum

Laplacian-wavelet

wavelet-adj_PCA

c4 F(7,49) = 110.33 every c4 block - average

Fig. 6 top graph p < 0.0001 (respectively)

η2 = .87 every c4 block - Laplacian

significant (respectively)

every c4 block - wavelet

(respectively)

c5 F(8,56) = 1.91 N/A

Fig. 6 bottom graph p = 0.077

η2 = .06

not significant

To examine these data, we arranged each participant’s
efficiency by the order of blocks they completed over the
course of the experiment. We then performed a linear
regression on each participant’s efficiency values against
their block order, calculating a regression slope. This anal-
ysis revealed that each participant’s regression slope did
not significantly differ from zero, using an alpha of 0.05,
meaning there was no significant increase or decrease in
efficiency over block order. This suggests that, although
we were using a simple experimental structure, there was
no strong evidence of learning over time in the study.

Discussion
In this paper, we used ideal observer analysis to examine
the fundamental impact of single-band imagery and image

fusion on the human visual system. This investigation
took an approach that allowed for direct evaluation of
human vision and gave a straightforward comparison of
the varying features of fusion to address and evaluate
the goals of image enhancement. The application of ideal
observer analysis to image fusion provided an assessment
that accounted for the information inherent in the stimu-
lus and task at hand. By deriving efficiencies as a relation
of human and ideal performance, we were able to objec-
tively compare human information usage across image
types without the confounding variable of information
content. Additionally, the progression of experimental
conditions over a simple experimental structure provided
foundational-level analysis of the impacts of fusion and
its associated properties while forming a framework for
future investigations.
We found interesting patterns within our experimental

exploration with a simple stimulus, task, and condition
structure. Namely, (1) contrary to image fusion goals,
fusion was not shown to be more effective as compared
to its single-band counterparts on human efficiency; (2)
there was no strong pattern of specific algorithm impact
across conditions, meaning the choice of algorithm alone
did not determine success or failure of fusion; instead, (3)
the chosen spectral band combination appeared to drive
varying result patterns. These findings are important to
the underlying goals of fusion and future research.We will
explore each of these as follows.
Our first major result showed that image fusion did

not consistently provide an improvement to human visual
processing over the single-band source images. In fact, we
found that images taken from the single-band sensor cam-
eras produced equivalent or, at times, better efficiencies
than those from the various fusion combinations. This
is vitally important, given that fused imagery is generally
assumed to be as good as or better than its correspond-
ing single-band imagery (Essock et al., 2004). Our finding
highlights the importance of considering the individual
sensor sets as part of the fusion evaluation and invalidates
the assumption that all image fusion is enhancing. Where
traditional image fusion evaluations fail to address the
impacts of single-band imagery, either in inability to cal-
culate this comparison (i.e., as in many traditional image
quality metrics, see Hossny et al., 2013; Kekre et al., 2013;
Raut et al., 2013; Wang et al., 2009) or through lack of
consideration for the impact of the individual fusion coun-
terparts, ideal observer analysis provides the flexibility
to incorporate this comparison while directly examining
human vision. Given that fusion aims to produce a more
informative image, our experiment shows that neither
this nor efficient usage of information with fusion can be
explicitly assumed with its application.
Our study also examined seven basic fusion algorithms.

Image fusion researchers often focus directly on finding
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the overall best algorithm of fusion. Looking at each of
our algorithms individually, we found that no single algo-
rithm choice produced a consistent benefit to efficiency
over single-band imagery across our study. In fact, many
algorithms varied in their impact across conditions, at
times producing very poor efficiency values. Algorithm
development is an important aspect of the study of image
fusion. Our results show the need for considering addi-
tional factors beyond just that of algorithm choice when
considering the perception goals of fusion. Our basic
experimental structure shows that a specific algorithm
cannot always be relied on to impact visual performance
in the same manner over changes to other fusion fac-
tors such as stimulus content, task, or single-band sensor
combination.
Note that, although we picked a set of traditional

techniques, there are many other ways that researchers
have fused imagery beyond the seven algorithms con-
sidered here (see Krishnamoorthy & Soman, 2010, for
review). These range from expansions of the basic
algorithmic equations (e.g., Krishnamoorthy & Soman,
2010) to colorization and/or color fusion (e.g., Toet &
Hogervorst, 2012). Additionally, researchers have consid-
ered manipulation of basic physical properties, such as
contrast, prior to and after fusion (e.g., McCarley & Krebs,
2006). These types of extensive combination techniques
were beyond the scope of our investigation and were thus
not considered here; however, it is important to note that
our framework can be adjusted to examine such manip-
ulations in relation to the human visual system. Given
that ideal observer performance is stimulus dependent,
the expansion of our setup to include other image manip-
ulations is as simple as including those manipulations in
the computational “templates” of the ideal observer and
experimental study of human data. In this way, various
other image properties can be examined and compared in
the future with respect to human efficiency.
Finally, the biggest impact on efficiency in our investi-

gation was in relation to changes to sensor pairing (i.e.,
varying patterns between conditions). This aspect is not
always examined directly in traditional image fusion stud-
ies because the emphasis is typically on the fused image.
Nonetheless, single-band sensor choices are very impor-
tant. Given that different spectral bands highlight differ-
ent components of the image, it is not surprising that
changes to single-band combinations have an impact on
the effect of fused imagery on vision. With the differences
in efficiency patterns over conditions in our studies, it
is evident that this property has the potential to majorly
influence image fusion success or failure and thus must
always be considered when generalizing image fusion
results.
Our experimental investigation as a whole estab-

lished the foundational impacts of single-band and fused

imagery on human efficiency, examining the general
impact of fusion and its corresponding properties on the
human visual system. Although our findings address the
core goals of image fusion and enhancement, it should
be noted that our patterns in results are specific to the
simple experimental structure.
The Landolt C images utilized in our research, although

redundant in overall shape, demonstrate the inherent
elements present in single-band imagery and algorith-
mic fusion (e.g., “glow,” camera noise, edge “sharp-
ness”/“blur”/“detail”) within a tightly controlled image
capture environment. This basic stimulus was deliber-
ately chosen to examine the impacts of single-band and
algorithmic fusion combination at their most fundamen-
tal levels. Additionally, our task, intentionally chosen,
encompassed a simple 1-of-8 choice of orientation. This
provided strict focus and analysis to the effects of the
image enhancements themselves.
The results from our experiment stand on their own for

our simple stimuli and task and are important in show-
ing that image fusion goals cannot always be assumed
to be met over all implementations. However, the ques-
tion remains as to whether these experimental findings
will hold with more complex imagery, task, image cap-
ture conditions, and experimental parameters and which
properties overall are most enhancing to the human visual
system. It is entirely possible that introduction of further
complexity to our experimental structure (e.g., stimuli
of natural scenes, detection/search tasks) could result in
increases in efficiency for image fusion.
Ideal observer analysis is uniquely designed to handle

these types of questions, allowing for direct comparison
of the impacts of each element and/or combinations of
elements of the fusion problem space while accounting
for changes in inherent information content due to stim-
ulus, task, and other experimental design. We have shown
ways in which human efficiencies can be compared over
changes to imagery in sensor combination, fusion algo-
rithm, and comparison of fused and unfused images. Ideal
observer analysis can be augmented similarly to incorpo-
rate research involving more complex stimulus content.
Additionally, the ideal observer can be adapted for a
number of other task structures (e.g., detection, classifi-
cation, discrimination) as well, through derivation of the
decision rule for the given task constraints. However aug-
mented, the use of this technique in relation to the study
of image fusion must be implemented systematically to
determine the driving forces for enhancement of human
perception. The framework established here provides the
structure for examining these questions. Additionally, the
ideal observer itself can provide guidance for navigating
the vast requirement of human data collection over vari-
ous image enhancements in an experimentally obtainable
manner.
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Framework and future directions
Recall that ideal observer performance is representative
of the relative amount of information for the task across
experimental properties and conditions. Given this, we
can examine the variation in information over differ-
ent fusion factors. For example, consider the heatmap in
Fig. 7. This figure depicts the distribution of information
(i.e., ideal observer performance) over sets of single-band
and fused imagery in the 1-of-8 Landolt C orientation
task used in the current paper. Within these results,
we can examine particular patterns of information over
the various combinations. For example, here we see that
the on-diagonal conditions are in roughly the same range
as many of the off-diagonal fused combinations (i.e., sim-
ilar color in the heatmap). This demonstrates that our
fusion conditions as a whole are not carrying vastly greater
amounts of information than their single-band counter-
parts. Furthermore, we can note that individual fusion
algorithms do not appear to produce consistent threshold
values over conditions (i.e., we do not see clear verti-
cally striped color patterns in the heatmap). This means
that information variation is not affected by algorithm
alone. Single-band images also differ from each in inter-
esting ways (i.e., the values in the diagonal are not all the
same color, but are close in some conditions). Exploring
the impacts of these types of patterns can be of signifi-
cant importance in understanding how each property or
combination of properties affects information availability.
So how does this information heatmap help us tackle

the problem space of image fusion in relation to human
testing? As we have seen even within our own basic
experiment, ideal observer performance does not always
predict human results (e.g., the maximum algorithm in

condition c0 is shown to carry the most information of the
blocks, but humans use this information least efficiently).
However, the similarities and differences in the distribu-
tion of information may provide valuable indicators as to
how and what to experimentally test to parse patterns of
influence on the human system. For example, consider the
SWIR and visible stimuli in our experiment. We observed
in our study that these stimulus types, when fused with
hot-white thermal imagery (condition c0 and condition
c3), produced similar patterns in efficiency data. Addi-
tionally, when fused together (condition c2), little to no
significant differences were found between blocks in effi-
ciency. Utilizing Fig. 7, we can see that the distributions in
information over SWIR and visible (low resolution) com-
binations are roughly similar in general, whereas other
sensors, like the hot-white thermal imagery, appear to
produce much greater variation across conditions. Given
that it would be practically infeasible to test all of the
heatmap combinations on humans, these kinds of patterns
are indicators of the best routes on which to systemat-
ically experiment across conditions. For example, here
if we want to examine specific sensor influence, it may
be a good choice to test a large number of hot-white
thermal combinations given the potential for variations,
whereas a conservative number of SWIR and visible com-
binations may suffice to hypothesize on their general
influence.
The image fusion problem space as a whole provides a

large number of properties for future consideration in cor-
respondence with human efficiency. Consider one of these
properties in relation to our current stimuli. In Fig. 8 are
examples of the SWIR and visible stimuli used in the cur-
rent paper. These images visibly appear to be very similar

Fig. 7 Ideal observer contrast energy thresholds over sets of single-band and fused imagery. Blocks on the main diagonal represent ideal
performance using single-band imagery captured as labeled (i.e., VIS-Hi Res: visible camera with high resolution, VIS-Low Res: visible camera with low
resolution, Night Vision, SWIR: short-wave infrared, HB Thermal: long-wave infrared image digitally inverted for hot-black imagery, HW Thermal:
long-wave infrared hot-white imagery). All other off-diagonal blocks demonstrate ideal performance using fused imagery from the two designated
components over the algorithms labeled on the bottommost axis (average (A), Laplacian (L), maximum (Mx), minimum (Mn), PCA (P), adjusted PCA
(aP), and wavelet (W)). Off-diagonal blocks highlighted in green and diagonal blocks highlighted in black represent the conditions tested in the
current paper’s experimental setup. Red blocks indicate conditions where reliable ideal observer thresholds could not be obtained
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Fig. 8 Imagery captured in SWIR and visible spectral bands. Landolt C images were used in the current experiment; face and landscape terrain
board images were captured using the same cameras. Landscape terrain board images as in Neriani et al. (2008)

to each other; however, with change to the stimulus
content, substantial differences can be seen between
the two sensors. Thus, an important future question is
whether our results are indicative of general sensor impact
or are possibly confined to our sensor-content-task link.
The examples surrounding Figs. 7 and 8 address spe-

cific changes to stimulus capture, combination, and
content. However, factors such as task, image registration
process and quality, collection conditions, and the like
carry great potential to impact human perception as well.
Additionally, although not demonstrated in our current
image sets, there do exist conditions where image fusion
itself has been inherently shown to provide impact to
the viewer. That is, cases do exist where a fusion tech-
nique is applied to create an interpretable image from
two completely uninterpretable component images (see
Pavel, Larimer, & Ahumada 1991). Understanding these
complex situations in relation to our base examination
would also be of interest to the overall impact of fusion.
These kinds of questions, as well as other variations to
fusion factors, can all be explored using ideal observer
analysis through adjustments and/or advancement of the
framework established here.

Conclusions
Given the nature of the ideal observer, the capability
exists to examine the impact of information variation in
ways that are not limited to our strictly defined basic
experimental structure. As shown in our heatmap demon-
stration, information distributions can be derived across
a number of fusion factors to inform the best options for
human testing. We can then begin to systematically eval-
uate the impacts on human efficiency as demonstrated in
our experimental applications.

The use of flexible tools that relate directly to human
perception is essential when considering the general
effects of image fusion and other image enhancements.
These explorations are not only important in applied
settings such as military and law enforcement research,
but are also of great benefit in determining the cogni-
tive impact of visual enhancements on human perception.
With careful and strategic examination, future research
will continue to aid our understanding of the overarching
effects of this multidimensional problem space of image
enhancement on human vision.

Appendix: Fusion algorithms
The following provides a brief summary of the fusion algo-
rithms utilized in this research. The Image Fusion Toolbox
website (www.metapix.de/toolbox) provides further infor-
mation regarding the detailed implementation of each
technique. The interested reader is encouraged to explore
the image fusion literature to compare and contrast these
algorithms with alternative approaches, as these are rep-
resentative of a subset of traditional algorithms used in
image fusion.

Minimum, maximum, and average fusion techniques
Minimum, maximum, and average fusion techniques rank
among the simplest image fusion algorithms. In these
algorithms, each image is represented as a matrix of pixel
values. The function to fuse imagery between matrices
can be described as a basic pixel-wise combination of cor-
responding positions in the individual component images.
For example, in maximum fusion, the algorithm starts
at the first pixel position (i.e., matrix cell) in both of
the individual component images, determines the great-
est pixel value between the two, and assigns this value to

www.metapix.de/toolbox
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the first pixel position in the fused image. This process is
repeated over all pixel positions until the full fused image
is created. In minimum and average fusion, each corre-
sponding pixel position is likewise evaluated with smallest
and average values, respectively, assigned to the final fused
image.

Principal component analysis and adjusted PCA
Principal component analysis (PCA) is a general math-
ematical technique that transforms a set of potentially
correlated variables into a set of linearly uncorrelated vari-
ables. It can be used for dimension reduction as well, by
choosing a subset of the uncorrelated variables. This is
done by performing a singular value decomposition (SVD)
on the matrix of data, with each column representing a
variable and each row representing a multivariate sample.
SVD produces an orthogonal basis space, which is inter-
preted as a set of orthogonal variables called principal
components. The first principal component is associated
with the axis that captures the maximum variance. The
second principal component is then constrained to be
orthogonal to the first principal component while still
capturing the most remaining variance. In image fusion,
PCA is applied by treating each input image as a vector
where the variables are the pixel values. In our applica-
tion, because we are working with grayscale images, only
the first principal component is utilized and assigned to
the final fused image. Straight application of PCA to image
fusion, as provided in the toolbox, can produce final image
values that are outside of the viewable pixel range. Thus,
an adjusted version of the PCA algorithm was utilized in
our study to address this issue. Here principal compo-
nent scores were transformed from a range of [–1,1], to
the [0,1] domain to be properly displayed. More informa-
tion on the PCA image fusion techniques can be found in
Metwalli, Nasr, Allah, and El-Rabaie (2009) and similar
fusion algorithm literature.

Laplacian pyramid
Laplacian pyramid image fusion is a technique in which
local operators of many scales but identical shape (as pro-
posed by Burt and Adelson (1983)) are applied to the input
images. Pixel-to-pixel correlations are first removed by
subtracting a low-pass filtered copy of the image from the
image itself. The result is a net data compression since
the difference image has low variance and entropy, and
the low-pass filtered image may be represented at reduced
sample density. Further data compression is achieved by
quantizing the difference image. These steps are then
repeated to compress the low-pass image. Iteration of the
process at appropriately expanded scales generates a pyra-
mid data structure. The encoding process is equivalent
to sampling the image with Laplacian operators of many
scales, which tends to enhance salient image features.

Discrete wavelet transform
The discrete wavelet transform (DWT) image fusion tech-
nique works by taking two spatially registered images
with differing spatial resolutions and color content, com-
bining the wavelet decomposition components from
each input image, and then reconstructing the merged
image by means of the inverse wavelet transform. The
wavelet merger can employ a variety of wavelet bases.
We utilized the Daubechies wavelet in our applica-
tion. More information on the DWT can be found in
Mallat (1996).
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